Question Number 66667 by naka3546 last updated on 18/Aug/19
Commented by naka3546 last updated on 18/Aug/19
$$\frac{\left[{PBQ}\right]}{\left[{PQCA}\right]}\:\:=\:\:? \\ $$
Commented by MJS last updated on 18/Aug/19
$$−\frac{\mathrm{4}}{\mathrm{9}}+\frac{\mathrm{2}}{\mathrm{9}}\sqrt{\mathrm{13}} \\ $$
Commented by naka3546 last updated on 18/Aug/19
$${Please}\:\:{show}\:\:{your}\:\:{working} \\ $$
Answered by mr W last updated on 18/Aug/19
$${let}\:{BQ}={x} \\ $$$$\mathrm{2}^{\mathrm{2}} =\mathrm{1}^{\mathrm{2}} +{x}^{\mathrm{2}} −\mathrm{2}×\mathrm{1}×{x}\:\mathrm{cos}\:\mathrm{60}° \\ $$$$\Rightarrow{x}^{\mathrm{2}} −{x}−\mathrm{3}=\mathrm{0} \\ $$$$\Rightarrow{x}=\frac{\mathrm{1}+\sqrt{\mathrm{13}}}{\mathrm{2}} \\ $$$${AB}={AC}={BC}=\frac{\mathrm{1}+\sqrt{\mathrm{13}}}{\mathrm{2}}+\mathrm{3}=\frac{\mathrm{7}+\sqrt{\mathrm{13}}}{\mathrm{2}} \\ $$$${A}_{\Delta{BPQ}} =\frac{\mathrm{1}}{\mathrm{2}}×\mathrm{1}×\frac{\mathrm{1}+\sqrt{\mathrm{13}}}{\mathrm{2}}×\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}=\frac{\sqrt{\mathrm{3}}\left(\mathrm{1}+\sqrt{\mathrm{13}}\right)}{\mathrm{8}} \\ $$$${A}_{\Delta{BAC}} =\frac{\sqrt{\mathrm{3}}}{\mathrm{4}}\left(\frac{\mathrm{7}+\sqrt{\mathrm{13}}}{\mathrm{2}}\right)^{\mathrm{2}} =\frac{\sqrt{\mathrm{3}}\left(\mathrm{31}+\mathrm{7}\sqrt{\mathrm{13}}\right)}{\mathrm{8}} \\ $$$${A}_{{PQCA}} =\frac{\sqrt{\mathrm{3}}\left(\mathrm{31}+\mathrm{7}\sqrt{\mathrm{13}}\right)}{\mathrm{8}}−\frac{\sqrt{\mathrm{3}}\left(\mathrm{1}+\sqrt{\mathrm{13}}\right)}{\mathrm{8}}=\frac{\mathrm{6}\sqrt{\mathrm{3}}\left(\mathrm{5}+\sqrt{\mathrm{13}}\right)}{\mathrm{8}} \\ $$$$\frac{{A}_{\Delta{BPQ}} }{{A}_{{PQCA}} }=\frac{\sqrt{\mathrm{3}}\left(\mathrm{1}+\sqrt{\mathrm{13}}\right)}{\mathrm{8}}×\frac{\mathrm{8}}{\mathrm{6}\sqrt{\mathrm{3}}\left(\mathrm{5}+\sqrt{\mathrm{13}}\right)} \\ $$$$\Rightarrow\frac{{A}_{\Delta{BPQ}} }{{A}_{{PQCA}} }=\frac{\mathrm{1}+\sqrt{\mathrm{13}}}{\mathrm{6}\left(\mathrm{5}+\sqrt{\mathrm{13}}\right)}=\frac{\sqrt{\mathrm{13}}−\mathrm{2}}{\mathrm{18}}\approx\mathrm{0}.\mathrm{089}\approx\frac{\mathrm{1}}{\mathrm{11}.\mathrm{2}} \\ $$