Menu Close

Question-67193




Question Number 67193 by Rasheed.Sindhi last updated on 23/Aug/19
Commented by Rasheed.Sindhi last updated on 24/Aug/19
           Some Counting Problems          _(−)   (a)How many rectangles are in the         above picture?  (b)How many rectangles contain        vertex L?  (c)How many rectangles contain        GQ^(−)  as an  edge?
$$\:\underset{−} {\:\:\:\:\:\:\:\:\:\:\mathbb{S}\mathrm{ome}\:\mathbb{C}\mathrm{ounting}\:\mathbb{P}\mathrm{roblems}\:\:\:\:\:\:\:\:\:\:} \\ $$$$\left({a}\right){How}\:{many}\:{rectangles}\:{are}\:{in}\:{the} \\ $$$$\:\:\:\:\:\:\:{above}\:{picture}? \\ $$$$\left({b}\right){How}\:{many}\:{rectangles}\:{contain} \\ $$$$\:\:\:\:\:\:{vertex}\:\mathrm{L}? \\ $$$$\left({c}\right){How}\:{many}\:{rectangles}\:{contain} \\ $$$$\:\:\:\:\:\:\overline {{GQ}}\:{as}\:{an}\:\:{edge}? \\ $$
Commented by Tony Lin last updated on 24/Aug/19
(1)C_2 ^7 C_2 ^5 =210  choose two from seven vertical lines   choose two from five horizontal lines  (2)C_1 ^6 C_1 ^4 =24  choose one vertical line except OK  choose one horizontal line except BH_1   then L would be a vertex of rectangles  (3)C_1 ^4 =4  choose one from JT, IS,HR&FP  then GQ would be an edge of rectangles
$$\left(\mathrm{1}\right){C}_{\mathrm{2}} ^{\mathrm{7}} {C}_{\mathrm{2}} ^{\mathrm{5}} =\mathrm{210} \\ $$$${choose}\:{two}\:{from}\:{seven}\:{vertical}\:{lines}\: \\ $$$${choose}\:{two}\:{from}\:{five}\:{horizontal}\:{lines} \\ $$$$\left(\mathrm{2}\right){C}_{\mathrm{1}} ^{\mathrm{6}} {C}_{\mathrm{1}} ^{\mathrm{4}} =\mathrm{24} \\ $$$${choose}\:{one}\:{vertical}\:{line}\:{except}\:{OK} \\ $$$${choose}\:{one}\:{horizontal}\:{line}\:{except}\:{BH}_{\mathrm{1}} \\ $$$${then}\:{L}\:{would}\:{be}\:{a}\:{vertex}\:{of}\:{rectangles} \\ $$$$\left(\mathrm{3}\right){C}_{\mathrm{1}} ^{\mathrm{4}} =\mathrm{4} \\ $$$${choose}\:{one}\:{from}\:{JT},\:{IS},{HR\&FP} \\ $$$${then}\:{GQ}\:{would}\:{be}\:{an}\:{edge}\:{of}\:{rectangles} \\ $$
Commented by mr W last updated on 24/Aug/19
nice question and nice solution!  what′s the answer if squares are  not accepted as rectangles?
$${nice}\:{question}\:{and}\:{nice}\:{solution}! \\ $$$${what}'{s}\:{the}\:{answer}\:{if}\:{squares}\:{are} \\ $$$${not}\:{accepted}\:{as}\:{rectangles}? \\ $$
Commented by Tony Lin last updated on 24/Aug/19
C_2 ^7 C_2 ^5 −4×6−3×5−2×4−1×3=160  all−1×1□−2×2□−3×3□−4×4□
$${C}_{\mathrm{2}} ^{\mathrm{7}} {C}_{\mathrm{2}} ^{\mathrm{5}} −\mathrm{4}×\mathrm{6}−\mathrm{3}×\mathrm{5}−\mathrm{2}×\mathrm{4}−\mathrm{1}×\mathrm{3}=\mathrm{160} \\ $$$${all}−\mathrm{1}×\mathrm{1}\Box−\mathrm{2}×\mathrm{2}\Box−\mathrm{3}×\mathrm{3}\Box−\mathrm{4}×\mathrm{4}\Box \\ $$
Commented by mr W last updated on 24/Aug/19
perfect sir!
$${perfect}\:{sir}! \\ $$
Commented by Rasheed.Sindhi last updated on 24/Aug/19
The Easiest Approach!  Thαnks Sir Tony Lin!
$$\mathcal{T}{he}\:\mathcal{E}{asiest}\:\mathcal{A}{pproach}! \\ $$$$\mathcal{T}{h}\alpha{nks}\:{Sir}\:{Tony}\:{Lin}! \\ $$
Commented by Rasheed.Sindhi last updated on 24/Aug/19
Sir Tony Lin, Q#66681 is also  looking for you
$${Sir}\:{Tony}\:{Lin},\:{Q}#\mathrm{66681}\:{is}\:{also} \\ $$$${looking}\:{for}\:{you} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *