Menu Close

Question-6750




Question Number 6750 by Tawakalitu. last updated on 22/Jul/16
Answered by Yozzii last updated on 22/Jul/16
Let ∠QPR=∠RPS=α>0, ∠PQR=β>0 and ∠PSR=δ>0.  By the sine rule, in △QPR,   ((QR)/(sinα))=((QP)/(sin∠PRQ))=((3a)/(sin(π−(α+β))))  ⇒QR=((3asinα)/(sin(α+β))).  In △PRS, by the sine rule we have  ((RS)/(sinα))=((PS)/(sin∠PRS))=(a/(sin(π−(α+δ))))  RS=((asinα)/(sin(α+δ))).  ∴((QR)/(RS))=((3asinα/sin(α+β))/(asinα/sin(α+δ)))  ((QR)/(RS))=((3sin(α+δ))/(sin(α+β)))  Now, in △QPS, ∠QPR+∠RPS+∠PSR+∠RQP=π.  ∴ α+α+β+δ=π⇒α+δ=π−(α+β).  ⇒((QR)/(RS))=((3sin(π−(α+β)))/(sin(α+β)))  ((QR)/(RS))=((3sin(α+β))/(sin(α+β)))=(3/1)  ⇒QR:RS=3:1⇒SR:(QR+RS)=SR:SQ=1:(3+1)=1:4  The point R divides SQ into two lengths such that  the length QR is 3 times the length RS,  which implies that RS is one quarter  the entire side SQ of △QPS.
$${Let}\:\angle{QPR}=\angle{RPS}=\alpha>\mathrm{0},\:\angle{PQR}=\beta>\mathrm{0}\:{and}\:\angle{PSR}=\delta>\mathrm{0}. \\ $$$${By}\:{the}\:{sine}\:{rule},\:{in}\:\bigtriangleup{QPR},\: \\ $$$$\frac{{QR}}{{sin}\alpha}=\frac{{QP}}{{sin}\angle{PRQ}}=\frac{\mathrm{3}{a}}{{sin}\left(\pi−\left(\alpha+\beta\right)\right)} \\ $$$$\Rightarrow{QR}=\frac{\mathrm{3}{asin}\alpha}{{sin}\left(\alpha+\beta\right)}. \\ $$$${In}\:\bigtriangleup{PRS},\:{by}\:{the}\:{sine}\:{rule}\:{we}\:{have} \\ $$$$\frac{{RS}}{{sin}\alpha}=\frac{{PS}}{{sin}\angle{PRS}}=\frac{{a}}{{sin}\left(\pi−\left(\alpha+\delta\right)\right)} \\ $$$${RS}=\frac{{asin}\alpha}{{sin}\left(\alpha+\delta\right)}. \\ $$$$\therefore\frac{{QR}}{{RS}}=\frac{\mathrm{3}{asin}\alpha/{sin}\left(\alpha+\beta\right)}{{asin}\alpha/{sin}\left(\alpha+\delta\right)} \\ $$$$\frac{{QR}}{{RS}}=\frac{\mathrm{3}{sin}\left(\alpha+\delta\right)}{{sin}\left(\alpha+\beta\right)} \\ $$$${Now},\:{in}\:\bigtriangleup{QPS},\:\angle{QPR}+\angle{RPS}+\angle{PSR}+\angle{RQP}=\pi. \\ $$$$\therefore\:\alpha+\alpha+\beta+\delta=\pi\Rightarrow\alpha+\delta=\pi−\left(\alpha+\beta\right). \\ $$$$\Rightarrow\frac{{QR}}{{RS}}=\frac{\mathrm{3}{sin}\left(\pi−\left(\alpha+\beta\right)\right)}{{sin}\left(\alpha+\beta\right)} \\ $$$$\frac{{QR}}{{RS}}=\frac{\mathrm{3}{sin}\left(\alpha+\beta\right)}{{sin}\left(\alpha+\beta\right)}=\frac{\mathrm{3}}{\mathrm{1}} \\ $$$$\Rightarrow{QR}:{RS}=\mathrm{3}:\mathrm{1}\Rightarrow{SR}:\left({QR}+{RS}\right)={SR}:{SQ}=\mathrm{1}:\left(\mathrm{3}+\mathrm{1}\right)=\mathrm{1}:\mathrm{4} \\ $$$${The}\:{point}\:{R}\:{divides}\:{SQ}\:{into}\:{two}\:{lengths}\:{such}\:{that} \\ $$$${the}\:{length}\:{QR}\:{is}\:\mathrm{3}\:{times}\:{the}\:{length}\:{RS}, \\ $$$${which}\:{implies}\:{that}\:{RS}\:{is}\:{one}\:{quarter} \\ $$$${the}\:{entire}\:{side}\:{SQ}\:{of}\:\bigtriangleup{QPS}. \\ $$$$ \\ $$
Commented by Tawakalitu. last updated on 22/Jul/16
Thanks so much.. i appreciate
$${Thanks}\:{so}\:{much}..\:{i}\:{appreciate} \\ $$
Answered by sandy_suhendra last updated on 22/Jul/16
Let ∠QPR=∠RPS=α           ∠QRP=β so ∠SRP=(180−β)  In △QPR ⇒((QR)/(sin α)) = ((PQ)/(sin β))     [sin rule]                 ((QR)/(sinα)) = ((3a)/(sin β))                   QR = ((3a sin α)/(sin β))  In △PRS ⇒ ((RS)/(sin α)) = ((PS)/(sin (180−β)))   ⇒ sin (180−β)=sin β                                 ((RS)/(sin α)) = (a/(sin β))                      RS = ((a sin α)/(sin β))  ∴    QR : RS = ((3a sin α)/(sin β))  :  ((a sin α)/(sin β)) = 3 :1  SR : SQ = 1 : (1+3) = 1 : 4  (I hope this answer is more simple)
$${Let}\:\angle{QPR}=\angle{RPS}=\alpha \\ $$$$\:\:\:\:\:\:\:\:\:\angle{QRP}=\beta\:{so}\:\angle{SRP}=\left(\mathrm{180}−\beta\right) \\ $$$${In}\:\bigtriangleup{QPR}\:\Rightarrow\frac{{QR}}{{sin}\:\alpha}\:=\:\frac{{PQ}}{{sin}\:\beta}\:\:\:\:\:\left[{sin}\:{rule}\right] \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{{QR}}{{sin}\alpha}\:=\:\frac{\mathrm{3}{a}}{{sin}\:\beta} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{QR}\:=\:\frac{\mathrm{3}{a}\:{sin}\:\alpha}{{sin}\:\beta} \\ $$$${In}\:\bigtriangleup{PRS}\:\Rightarrow\:\frac{{RS}}{{sin}\:\alpha}\:=\:\frac{{PS}}{{sin}\:\left(\mathrm{180}−\beta\right)}\:\:\:\Rightarrow\:{sin}\:\left(\mathrm{180}−\beta\right)={sin}\:\beta \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{{RS}}{{sin}\:\alpha}\:=\:\frac{{a}}{{sin}\:\beta} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{RS}\:=\:\frac{{a}\:{sin}\:\alpha}{{sin}\:\beta} \\ $$$$\therefore\:\:\:\:{QR}\::\:{RS}\:=\:\frac{\mathrm{3}{a}\:{sin}\:\alpha}{{sin}\:\beta}\:\::\:\:\frac{{a}\:{sin}\:\alpha}{{sin}\:\beta}\:=\:\mathrm{3}\::\mathrm{1} \\ $$$${SR}\::\:{SQ}\:=\:\mathrm{1}\::\:\left(\mathrm{1}+\mathrm{3}\right)\:=\:\mathrm{1}\::\:\mathrm{4} \\ $$$$\left({I}\:{hope}\:{this}\:{answer}\:{is}\:{more}\:{simple}\right) \\ $$
Commented by Tawakalitu. last updated on 23/Jul/16
Wow thanks
$${Wow}\:{thanks} \\ $$
Answered by Rasheed Soomro last updated on 22/Jul/16
Commented by Rasheed Soomro last updated on 23/Jul/16
Answer using only geometry   i-e without  using trigonomeric ratios.    Part-I  Proving  PQ : PS = QR : RS  Given:    _(−)   △PQS, ∠1=∠2  Construction:   _(−)   Draw ST  parallel to PR.Let ST meets produced  QP  at T.  Proof:_(−)   ∠3=∠1    [Corresponding angles]  But ∠1=∠2  [Given]  ∴    ∠3=∠2    [Transitive property of equality]  But ∠2=∠4   [Alternative angles]  ∴     ∠3=∠4    [Transitive property of equality]  ∴    PS=PT    [Opposite sides of equal angles]  Now in △QTS       ∵ PR ∥ TS  [Construction]  ∴  QP : PT = QR : RS   [A theorm]  But since PT=PS  [Proved already]  ∴   QP : PS = QR : RS    Part-II           ((QP)/(PS))=((QR)/(RS))   [Proved]           ((QP)/(PS))+1=((QR)/(RS))+1  [Adding 1 to both sides]   Or        ((QP+PS)/(PS))=((QR+RS)/(RS))           ((QP+PS)/(PS))=((QS)/(RS))    [QR+RS=QS]  Now QP=3a  and    PS=a    [Given]             ((3a+a)/a)=((QS)/(RS))    Or    ((QS)/(RS))  =(4/1)           RS : QS=1:4
$${Answer}\:{using}\:{only}\:{geometry}\: \\ $$$${i}-{e}\:{without}\:\:{using}\:{trigonomeric}\:{ratios}. \\ $$$$ \\ $$$${Part}-{I}\:\:{Proving}\:\:{PQ}\::\:{PS}\:=\:{QR}\::\:{RS} \\ $$$$\underset{−} {{Given}:\:\:\:\:} \\ $$$$\bigtriangleup{PQS},\:\angle\mathrm{1}=\angle\mathrm{2} \\ $$$$\underset{−} {{Construction}:\:\:\:} \\ $$$${Draw}\:{ST}\:\:{parallel}\:{to}\:{PR}.{Let}\:{ST}\:{meets}\:{produced} \\ $$$${QP}\:\:{at}\:{T}. \\ $$$$\underset{−} {{Proof}:} \\ $$$$\angle\mathrm{3}=\angle\mathrm{1}\:\:\:\:\left[{Corresponding}\:{angles}\right] \\ $$$${But}\:\angle\mathrm{1}=\angle\mathrm{2}\:\:\left[{Given}\right] \\ $$$$\therefore\:\:\:\:\angle\mathrm{3}=\angle\mathrm{2}\:\:\:\:\left[{Transitive}\:{property}\:{of}\:{equality}\right] \\ $$$${But}\:\angle\mathrm{2}=\angle\mathrm{4}\:\:\:\left[{Alternative}\:{angles}\right] \\ $$$$\therefore\:\:\:\:\:\angle\mathrm{3}=\angle\mathrm{4}\:\:\:\:\left[{Transitive}\:{property}\:{of}\:{equality}\right] \\ $$$$\therefore\:\:\:\:{PS}={PT}\:\:\:\:\left[{Opposite}\:{sides}\:{of}\:{equal}\:{angles}\right] \\ $$$${Now}\:{in}\:\bigtriangleup{QTS}\:\: \\ $$$$\:\:\:\because\:{PR}\:\parallel\:{TS}\:\:\left[{Construction}\right] \\ $$$$\therefore\:\:{QP}\::\:{PT}\:=\:{QR}\::\:{RS}\:\:\:\left[{A}\:{theorm}\right] \\ $$$${But}\:{since}\:{PT}={PS}\:\:\left[{Proved}\:{already}\right] \\ $$$$\therefore\:\:\:{QP}\::\:{PS}\:=\:{QR}\::\:{RS} \\ $$$$ \\ $$$${Part}-{II} \\ $$$$\:\:\:\:\:\:\:\:\:\frac{{QP}}{{PS}}=\frac{{QR}}{{RS}}\:\:\:\left[{Proved}\right] \\ $$$$\:\:\:\:\:\:\:\:\:\frac{{QP}}{{PS}}+\mathrm{1}=\frac{{QR}}{{RS}}+\mathrm{1}\:\:\left[{Adding}\:\mathrm{1}\:{to}\:{both}\:{sides}\right] \\ $$$$\:{Or}\:\:\:\:\:\:\:\:\frac{{QP}+{PS}}{{PS}}=\frac{{QR}+{RS}}{{RS}} \\ $$$$\:\:\:\:\:\:\:\:\:\frac{{QP}+{PS}}{{PS}}=\frac{{QS}}{{RS}}\:\:\:\:\left[{QR}+{RS}={QS}\right] \\ $$$${Now}\:{QP}=\mathrm{3}{a}\:\:{and}\:\:\:\:{PS}={a}\:\:\:\:\left[{Given}\right] \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{3}{a}+{a}}{{a}}=\frac{{QS}}{{RS}}\:\: \\ $$$${Or}\:\:\:\:\frac{{QS}}{{RS}}\:\:=\frac{\mathrm{4}}{\mathrm{1}} \\ $$$$\:\:\:\:\:\:\:\:\:{RS}\::\:{QS}=\mathrm{1}:\mathrm{4} \\ $$
Commented by Tawakalitu. last updated on 23/Jul/16
I really appreciate your effort
$${I}\:{really}\:{appreciate}\:{your}\:{effort} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *