Menu Close

Question-67775




Question Number 67775 by TawaTawa last updated on 31/Aug/19
Answered by MJS last updated on 31/Aug/19
ABCD is a square with side s=(√(196))=14  ⇒ the yellow sector′s area =(π/8)s^2 =((49π)/2) minus  the white segment which intersects the  diagonal in the center of the square    the area of the white segment = quarter  circle minus half square =((49π)/4)−((49)/2)  ⇒ the yellow area =((49)/4)π+((49)/2)≈62.9845
$${ABCD}\:\mathrm{is}\:\mathrm{a}\:\mathrm{square}\:\mathrm{with}\:\mathrm{side}\:{s}=\sqrt{\mathrm{196}}=\mathrm{14} \\ $$$$\Rightarrow\:\mathrm{the}\:\mathrm{yellow}\:\mathrm{sector}'\mathrm{s}\:\mathrm{area}\:=\frac{\pi}{\mathrm{8}}{s}^{\mathrm{2}} =\frac{\mathrm{49}\pi}{\mathrm{2}}\:\mathrm{minus} \\ $$$$\mathrm{the}\:\mathrm{white}\:\mathrm{segment}\:\mathrm{which}\:\mathrm{intersects}\:\mathrm{the} \\ $$$$\mathrm{diagonal}\:\mathrm{in}\:\mathrm{the}\:\mathrm{center}\:\mathrm{of}\:\mathrm{the}\:\mathrm{square} \\ $$$$ \\ $$$$\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\mathrm{the}\:\mathrm{white}\:\mathrm{segment}\:=\:\mathrm{quarter} \\ $$$$\mathrm{circle}\:\mathrm{minus}\:\mathrm{half}\:\mathrm{square}\:=\frac{\mathrm{49}\pi}{\mathrm{4}}−\frac{\mathrm{49}}{\mathrm{2}} \\ $$$$\Rightarrow\:\mathrm{the}\:\mathrm{yellow}\:\mathrm{area}\:=\frac{\mathrm{49}}{\mathrm{4}}\pi+\frac{\mathrm{49}}{\mathrm{2}}\approx\mathrm{62}.\mathrm{9845} \\ $$
Commented by MJS last updated on 31/Aug/19
corrected my mistake
$$\mathrm{corrected}\:\mathrm{my}\:\mathrm{mistake} \\ $$
Commented by TawaTawa last updated on 31/Aug/19
God bless you sir.
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}. \\ $$
Answered by mr W last updated on 31/Aug/19
a^2 =196  ⇒a=(√(196))=14  R=a=14  r=(a/2)=7  A_(shaded) =((πR^2 )/8)−(r^2 /2)((π/2)−sin (π/2))  =((π 14^2 )/8)−(7^2 /2)((π/2)−1)  =((49(π+2))/4)  =63 cm^2
$${a}^{\mathrm{2}} =\mathrm{196} \\ $$$$\Rightarrow{a}=\sqrt{\mathrm{196}}=\mathrm{14} \\ $$$${R}={a}=\mathrm{14} \\ $$$${r}=\frac{{a}}{\mathrm{2}}=\mathrm{7} \\ $$$${A}_{{shaded}} =\frac{\pi{R}^{\mathrm{2}} }{\mathrm{8}}−\frac{{r}^{\mathrm{2}} }{\mathrm{2}}\left(\frac{\pi}{\mathrm{2}}−\mathrm{sin}\:\frac{\pi}{\mathrm{2}}\right) \\ $$$$=\frac{\pi\:\mathrm{14}^{\mathrm{2}} }{\mathrm{8}}−\frac{\mathrm{7}^{\mathrm{2}} }{\mathrm{2}}\left(\frac{\pi}{\mathrm{2}}−\mathrm{1}\right) \\ $$$$=\frac{\mathrm{49}\left(\pi+\mathrm{2}\right)}{\mathrm{4}} \\ $$$$=\mathrm{63}\:{cm}^{\mathrm{2}} \\ $$
Commented by TawaTawa last updated on 31/Aug/19
God bless you sir. Thanks for your time
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}.\:\mathrm{Thanks}\:\mathrm{for}\:\mathrm{your}\:\mathrm{time} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *