Menu Close

Question-67907




Question Number 67907 by A8;15: last updated on 02/Sep/19
Commented by mathmax by abdo last updated on 02/Sep/19
let I =∫ (dx/(x(√(x^2 +x−6))))  x^2 +x−6=0→Δ=1−4(−6) =25 ⇒x_1 =((−1+5)/2)=2  and   x_2 =((−1−5)/2) =−3 ⇒I =∫   (dx/(x(√((x−2)(x+3)))))  we do the changement  (√(x−2))=t ⇒x−2=t^2  ⇒x=t^2  +2 ⇒I =∫   ((2tdt)/((t^2  +2)t(√(t^2 +2+3))))  =∫   ((2dt)/((t^2  +2)(√(t^2  +5))))  af ter we do the changement t=(√5)sh(u) ⇒  I =∫    ((2(√5)ch(u))/((25sh^2 u +2)(√5)ch(u)))du =∫    ((2du)/(25((ch(2u)−1)/2)+2))  =∫     ((4du)/(25ch(2u)−25+4)) =∫   ((4du)/(25ch(2u)−21))  =∫   ((4du)/(25((e^(2u) +e^(−2u) )/2)−21)) =∫  ((4du)/(25e^(2u) +25e^(−2u) −42))  =_(e^(2u) =t)     ∫   (4/(25t+25t^(−1) −42))×(dt/(2t)) =∫  ((2dt)/(25t^2 +25)) =(2/(25)) ∫  (dt/(1+t^2 ))  =(2/(25)) arctan(t)+c =(2/(25)) arctan(e^(2u) ) +c  but u=argsh((t/( (√5)))) =ln((t/( (√5)))+(√(1+(t^2 /5)))) ⇒   e^(2u) =((t/( (√5)))+(√(1+(t^2 /5))))^2  ⇒ I =(2/(25)) arctan{(((t+(√(5+t^2 )))/( (√5))))^2 } +C
letI=dxxx2+x6x2+x6=0Δ=14(6)=25x1=1+52=2andx2=152=3I=dxx(x2)(x+3)wedothechangementx2=tx2=t2x=t2+2I=2tdt(t2+2)tt2+2+3=2dt(t2+2)t2+5afterwedothechangementt=5sh(u)I=25ch(u)(25sh2u+2)5ch(u)du=2du25ch(2u)12+2=4du25ch(2u)25+4=4du25ch(2u)21=4du25e2u+e2u221=4du25e2u+25e2u42=e2u=t425t+25t142×dt2t=2dt25t2+25=225dt1+t2=225arctan(t)+c=225arctan(e2u)+cbutu=argsh(t5)=ln(t5+1+t25)e2u=(t5+1+t25)2I=225arctan{(t+5+t25)2}+C
Answered by MJS last updated on 02/Sep/19
∫(dx/(x(√(x^2 +x−6))))=       [t=((12−x)/(5x)) → dx=−((5x^2 )/(12))dt]  =−((√6)/6)∫(dt/( (√(1−t^2 ))))=−((√6)/6)arcsin t =  =((√6)/6)arcsin ((x−12)/(5x))
dxxx2+x6=[t=12x5xdx=5x212dt]=66dt1t2=66arcsint==66arcsinx125x
Commented by MJS last updated on 02/Sep/19
∫(dx/(x(√((x+a^2 )(x−b^2 )))))=       [t=(((a^2 −b^2 )x−2a^2 b^2 )/((a^2 +b^2 )x)) → dx=(((a^2 +b^2 )x^2 )/(2a^2 b^2 ))dt]  =−(1/( (√(a^2 b^2 ))))∫(dt/( (√(1−t^2 ))))
dxx(x+a2)(xb2)=[t=(a2b2)x2a2b2(a2+b2)xdx=(a2+b2)x22a2b2dt]=1a2b2dt1t2

Leave a Reply

Your email address will not be published. Required fields are marked *