Menu Close

Question-67918




Question Number 67918 by aliesam last updated on 02/Sep/19
Answered by $@ty@m123 last updated on 02/Sep/19
Let α+β=x  tan x=(((1/2)+(1/3))/(1−(1/2)×(1/3)))=1⇒x=45^o   ...(1)  tan β=(1/3)⇒sin β=(1/( (√(10)))) & cos β=(3/( (√(10)))) ..(2)  ∴ cos (12α+13β)=cos (12x+β)  =cos 12xcos  β−sin 12xsin β  =cos 540^o ×(3/( (√(10))))−sin 540^o ×(1/( (√(10))))  =(−1)×(3/( (√(10))))−0×(3/( (√(10))))  =((−3)/( (√(10))))
$${Let}\:\alpha+\beta={x} \\ $$$$\mathrm{tan}\:{x}=\frac{\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}}{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}×\frac{\mathrm{1}}{\mathrm{3}}}=\mathrm{1}\Rightarrow{x}=\mathrm{45}^{\mathrm{o}} \:\:…\left(\mathrm{1}\right) \\ $$$$\mathrm{tan}\:\beta=\frac{\mathrm{1}}{\mathrm{3}}\Rightarrow\mathrm{sin}\:\beta=\frac{\mathrm{1}}{\:\sqrt{\mathrm{10}}}\:\&\:\mathrm{cos}\:\beta=\frac{\mathrm{3}}{\:\sqrt{\mathrm{10}}}\:..\left(\mathrm{2}\right) \\ $$$$\therefore\:\mathrm{cos}\:\left(\mathrm{12}\alpha+\mathrm{13}\beta\right)=\mathrm{cos}\:\left(\mathrm{12}{x}+\beta\right) \\ $$$$=\mathrm{cos}\:\mathrm{12}{x}\mathrm{cos}\:\:\beta−\mathrm{sin}\:\mathrm{12}{x}\mathrm{sin}\:\beta \\ $$$$=\mathrm{cos}\:\mathrm{540}^{\mathrm{o}} ×\frac{\mathrm{3}}{\:\sqrt{\mathrm{10}}}−\mathrm{sin}\:\mathrm{540}^{\mathrm{o}} ×\frac{\mathrm{1}}{\:\sqrt{\mathrm{10}}} \\ $$$$=\left(−\mathrm{1}\right)×\frac{\mathrm{3}}{\:\sqrt{\mathrm{10}}}−\mathrm{0}×\frac{\mathrm{3}}{\:\sqrt{\mathrm{10}}} \\ $$$$=\frac{−\mathrm{3}}{\:\sqrt{\mathrm{10}}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *