Menu Close

Question-67983




Question Number 67983 by peter frank last updated on 03/Sep/19
Commented by Abdo msup. last updated on 03/Sep/19
b) let f(x)=((1/x))^(x )  ⇒f(x)=x^(−x)  =e^(−xln(x))   f is?defined on ]0,+∞[  lim_(x→0 and x>0)    f(x)=e^(0=1)   lim_(x→+∞) f(x) =lim_(x→+∞)    e^(−xlnx) =0  f^′ (x)= (−lnx−1)e^(−xlnx)  =−(lnx+1)f(x)  f^′ (x) =0  ⇔lnx+1=0  ⇔lnx =−1 ⇔x=e^(−1)   (see thst f)x>0 )  f(e^(−1) ) =e^(−e^(−1) ln(e^(−1) ))  =e^(1/e)   f^′ (x)>0 ⇔ lnx +1<0 ⇔lnx<−1 ⇔x<e^(−1)   varistion of f  x           0                 e^(−1)                          +∞  f^′ (x)             +      0              −  f(x)    1 incr       e^(1/e)         dcres        0  ⇒ max f(x)_(x>0)     =f(e^(−1) ) = e^(1/e)
$$\left.{b}\right)\:{let}\:{f}\left({x}\right)=\left(\frac{\mathrm{1}}{{x}}\right)^{{x}\:} \:\Rightarrow{f}\left({x}\right)={x}^{−{x}} \:={e}^{−{xln}\left({x}\right)} \\ $$$$\left.{f}\:{is}?{defined}\:{on}\:\right]\mathrm{0},+\infty\left[\right. \\ $$$${lim}_{{x}\rightarrow\mathrm{0}\:{and}\:{x}>\mathrm{0}} \:\:\:{f}\left({x}\right)={e}^{\mathrm{0}=\mathrm{1}} \\ $$$${lim}_{{x}\rightarrow+\infty} {f}\left({x}\right)\:={lim}_{{x}\rightarrow+\infty} \:\:\:{e}^{−{xlnx}} =\mathrm{0} \\ $$$${f}^{'} \left({x}\right)=\:\left(−{lnx}−\mathrm{1}\right){e}^{−{xlnx}} \:=−\left({lnx}+\mathrm{1}\right){f}\left({x}\right) \\ $$$${f}^{'} \left({x}\right)\:=\mathrm{0}\:\:\Leftrightarrow{lnx}+\mathrm{1}=\mathrm{0}\:\:\Leftrightarrow{lnx}\:=−\mathrm{1}\:\Leftrightarrow{x}={e}^{−\mathrm{1}} \\ $$$$\left.\left({see}\:{thst}\:{f}\right){x}>\mathrm{0}\:\right) \\ $$$${f}\left({e}^{−\mathrm{1}} \right)\:={e}^{−{e}^{−\mathrm{1}} {ln}\left({e}^{−\mathrm{1}} \right)} \:={e}^{\frac{\mathrm{1}}{{e}}} \\ $$$${f}^{'} \left({x}\right)>\mathrm{0}\:\Leftrightarrow\:{lnx}\:+\mathrm{1}<\mathrm{0}\:\Leftrightarrow{lnx}<−\mathrm{1}\:\Leftrightarrow{x}<{e}^{−\mathrm{1}} \\ $$$${varistion}\:{of}\:{f} \\ $$$${x}\:\:\:\:\:\:\:\:\:\:\:\mathrm{0}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{e}^{−\mathrm{1}} \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+\infty \\ $$$${f}^{'} \left({x}\right)\:\:\:\:\:\:\:\:\:\:\:\:\:+\:\:\:\:\:\:\mathrm{0}\:\:\:\:\:\:\:\:\:\:\:\:\:\:− \\ $$$${f}\left({x}\right)\:\:\:\:\mathrm{1}\:{incr}\:\:\:\:\:\:\:{e}^{\frac{\mathrm{1}}{{e}}} \:\:\:\:\:\:\:\:{dcres}\:\:\:\:\:\:\:\:\mathrm{0} \\ $$$$\Rightarrow\:{max}\:{f}\left({x}\right)_{{x}>\mathrm{0}} \:\:\:\:={f}\left({e}^{−\mathrm{1}} \right)\:=\:{e}^{\frac{\mathrm{1}}{{e}}} \\ $$
Answered by MJS last updated on 03/Sep/19
a) geometrically:  any rectangular triangle is one half of a  rectangle, the hypothenuse of the triangle  is one of the diagonals of the rectangle, the  diagonals bisect each other, the rectangle′s  circumcircle is the same as the triangle′s,  done
$$\left.{a}\right)\:\mathrm{geometrically}: \\ $$$$\mathrm{any}\:\mathrm{rectangular}\:\mathrm{triangle}\:\mathrm{is}\:\mathrm{one}\:\mathrm{half}\:\mathrm{of}\:\mathrm{a} \\ $$$$\mathrm{rectangle},\:\mathrm{the}\:\mathrm{hypothenuse}\:\mathrm{of}\:\mathrm{the}\:\mathrm{triangle} \\ $$$$\mathrm{is}\:\mathrm{one}\:\mathrm{of}\:\mathrm{the}\:\mathrm{diagonals}\:\mathrm{of}\:\mathrm{the}\:\mathrm{rectangle},\:\mathrm{the} \\ $$$$\mathrm{diagonals}\:\mathrm{bisect}\:\mathrm{each}\:\mathrm{other},\:\mathrm{the}\:\mathrm{rectangle}'\mathrm{s} \\ $$$$\mathrm{circumcircle}\:\mathrm{is}\:\mathrm{the}\:\mathrm{same}\:\mathrm{as}\:\mathrm{the}\:\mathrm{triangle}'\mathrm{s}, \\ $$$$\mathrm{done} \\ $$
Commented by peter frank last updated on 03/Sep/19
thanks
$${thanks}\: \\ $$
Answered by MJS last updated on 03/Sep/19
b)  f(x)=x^(−x)   f′(x)=−(1+ln x)x^(−x)   f′(x)=0 ⇒ ln x =−1 ⇒ x=e^(−1)   f′′(x)=(x(1+ln x)^2 −1)x^(−(x+1))   f′′(e^(−1) )=−e^(1+(1/e)) <0 ⇒  ⇒ maximum at x=e^(−1) ; f(e^(−1) )=e^(1/e)
$$\left.{b}\right) \\ $$$${f}\left({x}\right)={x}^{−{x}} \\ $$$${f}'\left({x}\right)=−\left(\mathrm{1}+\mathrm{ln}\:{x}\right){x}^{−{x}} \\ $$$${f}'\left({x}\right)=\mathrm{0}\:\Rightarrow\:\mathrm{ln}\:{x}\:=−\mathrm{1}\:\Rightarrow\:{x}=\mathrm{e}^{−\mathrm{1}} \\ $$$${f}''\left({x}\right)=\left({x}\left(\mathrm{1}+\mathrm{ln}\:{x}\right)^{\mathrm{2}} −\mathrm{1}\right){x}^{−\left({x}+\mathrm{1}\right)} \\ $$$${f}''\left(\mathrm{e}^{−\mathrm{1}} \right)=−\mathrm{e}^{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{e}}} <\mathrm{0}\:\Rightarrow \\ $$$$\Rightarrow\:\mathrm{maximum}\:\mathrm{at}\:{x}=\mathrm{e}^{−\mathrm{1}} ;\:{f}\left(\mathrm{e}^{−\mathrm{1}} \right)=\mathrm{e}^{\frac{\mathrm{1}}{\mathrm{e}}} \\ $$
Commented by peter frank last updated on 03/Sep/19
thank you
$${thank}\:{you} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *