Menu Close

Question-68021




Question Number 68021 by anaplak last updated on 03/Sep/19
Commented by Tanmay chaudhury last updated on 03/Sep/19
Answered by Tanmay chaudhury last updated on 03/Sep/19
p−1=(1/2)cos2α−(1/(2.4))cos4α+((1.3)/(2.4.6))cos6α+...  q=(1/2)sin2α−(1/(2.4))sin4α+((1.3)/(2.4.6))sin6α+...  (p−1)+iq=(1/2)e^(i2α) −(1/(2.4))e^(i4α) +((1.3)/(2.4.6))e^(i6α) −...  p+iq=1+(1/2)e^(i2α) −(1/(2.4))e^(i4α) +((1.3)/(2.4.6))e^(i6α) −...  p+iq=(1+e^(i2α) )^(1/2) =(1+cos2α+isin2α)^(1/2)   p+iq=[2cos^2 α+i2sinαcosα]^(1/2)   p+iq=[2cosα(e^(iα) )]^(1/2)   p+iq=2^(1/2) (cosα)^(1/2) e^(i×(α/2))   p+iq=2^(1/2) (cosα)^(1/2) (cos(α/2)+isin(α/2))  so p=2^(1/2) .(cosα)^(1/2) .cos(α/2)  q=2^(1/2) .(cosα)^(1/2) .sin(α/2)  pls check...
p1=12cos2α12.4cos4α+1.32.4.6cos6α+q=12sin2α12.4sin4α+1.32.4.6sin6α+(p1)+iq=12ei2α12.4ei4α+1.32.4.6ei6αp+iq=1+12ei2α12.4ei4α+1.32.4.6ei6αp+iq=(1+ei2α)12=(1+cos2α+isin2α)12p+iq=[2cos2α+i2sinαcosα]12p+iq=[2cosα(eiα)]12p+iq=212(cosα)12ei×α2p+iq=212(cosα)12(cosα2+isinα2)sop=212.(cosα)12.cosα2q=212.(cosα)12.sinα2plscheck
Commented by mathmax by abdo last updated on 03/Sep/19
sir Tanmay you have used  relation 20.12 you answer  is correct.
sirTanmayyouhaveusedrelation20.12youansweriscorrect.
Commented by Tanmay chaudhury last updated on 03/Sep/19
thank you sir...
thankyousir

Leave a Reply

Your email address will not be published. Required fields are marked *