Menu Close

Question-6806




Question Number 6806 by Tawakalitu. last updated on 27/Jul/16
Answered by Yozzii last updated on 28/Jul/16
We have that ∠QSR=40°. Let ω be   circle PQRS. Points S and P lie on  ω on the same side of line QR.   ⇒∠QSR=∠QPR ∴ ∠QPR=40°.  TU is a straight line, so   ∠TPS+∠SPR+∠QPR=180°  ⇒∠SPR=180°−40°−74°=66°  Angles ∠SPR and ∠SQR are in the  same segment of ω⇒ ∠SQR=∠SPR=66°.  We know that ∠RQU=68°  Now, ∠PQS+∠SQR+∠RQU=180°  ⇒∠PQS=180°−66°−68°=46°.  Since ∠PQS and ∠PRS lie in the major  segement PQRS, ∠PRS=∠PQS=46°.
$${We}\:{have}\:{that}\:\angle{QSR}=\mathrm{40}°.\:{Let}\:\omega\:{be}\: \\ $$$${circle}\:{PQRS}.\:{Points}\:{S}\:{and}\:{P}\:{lie}\:{on} \\ $$$$\omega\:{on}\:{the}\:{same}\:{side}\:{of}\:{line}\:{QR}.\: \\ $$$$\Rightarrow\angle{QSR}=\angle{QPR}\:\therefore\:\angle{QPR}=\mathrm{40}°. \\ $$$${TU}\:{is}\:{a}\:{straight}\:{line},\:{so}\: \\ $$$$\angle{TPS}+\angle{SPR}+\angle{QPR}=\mathrm{180}° \\ $$$$\Rightarrow\angle{SPR}=\mathrm{180}°−\mathrm{40}°−\mathrm{74}°=\mathrm{66}° \\ $$$${Angles}\:\angle{SPR}\:{and}\:\angle{SQR}\:{are}\:{in}\:{the} \\ $$$${same}\:{segment}\:{of}\:\omega\Rightarrow\:\angle{SQR}=\angle{SPR}=\mathrm{66}°. \\ $$$${We}\:{know}\:{that}\:\angle{RQU}=\mathrm{68}° \\ $$$${Now},\:\angle{PQS}+\angle{SQR}+\angle{RQU}=\mathrm{180}° \\ $$$$\Rightarrow\angle{PQS}=\mathrm{180}°−\mathrm{66}°−\mathrm{68}°=\mathrm{46}°. \\ $$$${Since}\:\angle{PQS}\:{and}\:\angle{PRS}\:{lie}\:{in}\:{the}\:{major} \\ $$$${segement}\:{PQRS},\:\angle{PRS}=\angle{PQS}=\mathrm{46}°. \\ $$$$ \\ $$$$ \\ $$$$ \\ $$
Commented by Tawakalitu. last updated on 28/Jul/16
Wow thanks.
$${Wow}\:{thanks}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *