Menu Close

Question-68078




Question Number 68078 by anaplak last updated on 04/Sep/19
Answered by Smail last updated on 04/Sep/19
C+iS=1+z(cosθ+isinθ)+(z^2 /(2!))(cos2θ+isin2θ)+...  =1+ze^(iθ) +(((ze^(iθ) )^2 )/(2!))+...=e^(ze^(iθ) ) =e^(zcosθ) ×e^(zisinθ)   C+iS=(√(C^2 +S^2 ))e^(itan^(−1) ((S/C))) =e^(zcosθ) e^(izsinθ)   (√(C^2 +S^2 ))=e^(zcosθ)   ln((√(C^2 +S^2 )))=zcosθ⇔zcosθ=(1/2)ln(C^2 +S^2 )  and  e^(itan^(−1) (S/C)) =e^(izsinθ) ⇔tan^(−1) (S/C)=zsinθ
$${C}+{iS}=\mathrm{1}+{z}\left({cos}\theta+{isin}\theta\right)+\frac{{z}^{\mathrm{2}} }{\mathrm{2}!}\left({cos}\mathrm{2}\theta+{isin}\mathrm{2}\theta\right)+… \\ $$$$=\mathrm{1}+{ze}^{{i}\theta} +\frac{\left({ze}^{{i}\theta} \right)^{\mathrm{2}} }{\mathrm{2}!}+…={e}^{{ze}^{{i}\theta} } ={e}^{{zcos}\theta} ×{e}^{{zisin}\theta} \\ $$$${C}+{iS}=\sqrt{{C}^{\mathrm{2}} +{S}^{\mathrm{2}} }{e}^{{itan}^{−\mathrm{1}} \left(\frac{{S}}{{C}}\right)} ={e}^{{zcos}\theta} {e}^{{izsin}\theta} \\ $$$$\sqrt{{C}^{\mathrm{2}} +{S}^{\mathrm{2}} }={e}^{{zcos}\theta} \\ $$$${ln}\left(\sqrt{{C}^{\mathrm{2}} +{S}^{\mathrm{2}} }\right)={zcos}\theta\Leftrightarrow{zcos}\theta=\frac{\mathrm{1}}{\mathrm{2}}{ln}\left({C}^{\mathrm{2}} +{S}^{\mathrm{2}} \right) \\ $$$${and} \\ $$$${e}^{{itan}^{−\mathrm{1}} \left({S}/{C}\right)} ={e}^{{izsin}\theta} \Leftrightarrow{tan}^{−\mathrm{1}} \left({S}/{C}\right)={zsin}\theta \\ $$
Commented by Smail last updated on 04/Sep/19
This is true if z isn′t a complex number
$${This}\:{is}\:{true}\:{if}\:{z}\:{isn}'{t}\:{a}\:{complex}\:{number} \\ $$
Commented by mathmax by abdo last updated on 04/Sep/19
sir smail your answer is correct thanks.
$${sir}\:{smail}\:{your}\:{answer}\:{is}\:{correct}\:{thanks}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *