Menu Close

Question-68171




Question Number 68171 by naka3546 last updated on 06/Sep/19
Commented by mathmax by abdo last updated on 06/Sep/19
  (√(5−2(√x) )) is not defined on +∞ !
$$ \\ $$$$\sqrt{\mathrm{5}−\mathrm{2}\sqrt{{x}}\:}\:{is}\:{not}\:{defined}\:{on}\:+\infty\:! \\ $$
Commented by mathmax by abdo last updated on 07/Sep/19
i think the Q here is find lim_(x→+∞) (((√(2(√x)+5))−(√(2(√x)−5)))/( (√x)−1))=lim_(x→+∞) f(x)  let treat this  we use tbe changement (√x)=t   lim_(x→+∞) f(x)=lim_(t→+∞)  (((√(2t+5))−(√(2t−5)))/(t−1))  =lim_(t→+∞)  ((2t+5−2t+5)/((t−1)((√(2t+5))+(√(2t−5))))) =lim_(t→+∞) ((10)/((t−1)((√(2t+5))+(√(2t−5))))))  =0
$${i}\:{think}\:{the}\:{Q}\:{here}\:{is}\:{find}\:{lim}_{{x}\rightarrow+\infty} \frac{\sqrt{\mathrm{2}\sqrt{{x}}+\mathrm{5}}−\sqrt{\mathrm{2}\sqrt{{x}}−\mathrm{5}}}{\:\sqrt{{x}}−\mathrm{1}}={lim}_{{x}\rightarrow+\infty} {f}\left({x}\right) \\ $$$${let}\:{treat}\:{this}\:\:{we}\:{use}\:{tbe}\:{changement}\:\sqrt{{x}}={t}\: \\ $$$${lim}_{{x}\rightarrow+\infty} {f}\left({x}\right)={lim}_{{t}\rightarrow+\infty} \:\frac{\sqrt{\mathrm{2}{t}+\mathrm{5}}−\sqrt{\mathrm{2}{t}−\mathrm{5}}}{{t}−\mathrm{1}} \\ $$$$\left.={lim}_{{t}\rightarrow+\infty} \:\frac{\mathrm{2}{t}+\mathrm{5}−\mathrm{2}{t}+\mathrm{5}}{\left({t}−\mathrm{1}\right)\left(\sqrt{\mathrm{2}{t}+\mathrm{5}}+\sqrt{\mathrm{2}{t}−\mathrm{5}}\right)}\:={lim}_{{t}\rightarrow+\infty} \frac{\mathrm{10}}{\left({t}−\mathrm{1}\right)\left(\sqrt{\mathrm{2}{t}+\mathrm{5}}+\sqrt{\left.\mathrm{2}{t}−\mathrm{5}\right)}\right.}\right) \\ $$$$=\mathrm{0} \\ $$$$ \\ $$
Answered by Kunal12588 last updated on 06/Sep/19
lim_(x→∞) (((√(5+2(√x)))−(√(5−2(√x))))/( (√x)−1))  (√x)=t ; x→∞ ⇒ t→∞  lim_(t→∞) (((√(5+2t))−(√(5−2t)))/(t−1))  =lim_(t→∞) (((√((5/t^2 )+(2/t)))−(√((5/t^2 )−(2/t))))/(1−(1/t)))  =(0/1)=0
$$\underset{{x}\rightarrow\infty} {{lim}}\frac{\sqrt{\mathrm{5}+\mathrm{2}\sqrt{{x}}}−\sqrt{\mathrm{5}−\mathrm{2}\sqrt{{x}}}}{\:\sqrt{{x}}−\mathrm{1}} \\ $$$$\sqrt{{x}}={t}\:;\:{x}\rightarrow\infty\:\Rightarrow\:{t}\rightarrow\infty \\ $$$$\underset{{t}\rightarrow\infty} {{lim}}\frac{\sqrt{\mathrm{5}+\mathrm{2}{t}}−\sqrt{\mathrm{5}−\mathrm{2}{t}}}{{t}−\mathrm{1}} \\ $$$$=\underset{{t}\rightarrow\infty} {{lim}}\frac{\sqrt{\frac{\mathrm{5}}{{t}^{\mathrm{2}} }+\frac{\mathrm{2}}{{t}}}−\sqrt{\frac{\mathrm{5}}{{t}^{\mathrm{2}} }−\frac{\mathrm{2}}{{t}}}}{\mathrm{1}−\frac{\mathrm{1}}{{t}}} \\ $$$$=\frac{\mathrm{0}}{\mathrm{1}}=\mathrm{0} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *