Menu Close

Question-68183




Question Number 68183 by ajfour last updated on 06/Sep/19
Commented by ajfour last updated on 06/Sep/19
QBC and BPD are tangent and  normal respectively to  the cubic function y=x^3 −19x+30  at one of its root and QAD and  AP C  are again tangent and  normal respectively to the  same function at one of its other  root. Circumcircles are drawn  to quadrilaterals ABCD and  APBQ.  Find their radii and  prove that PQ is ⊥ to CD.
$${QBC}\:{and}\:{BPD}\:{are}\:{tangent}\:{and} \\ $$$${normal}\:{respectively}\:{to} \\ $$$${the}\:{cubic}\:{function}\:{y}={x}^{\mathrm{3}} −\mathrm{19}{x}+\mathrm{30} \\ $$$${at}\:{one}\:{of}\:{its}\:{root}\:{and}\:{QAD}\:{and} \\ $$$${AP}\:{C}\:\:{are}\:{again}\:{tangent}\:{and} \\ $$$${normal}\:{respectively}\:{to}\:{the} \\ $$$${same}\:{function}\:{at}\:{one}\:{of}\:{its}\:{other} \\ $$$${root}.\:{Circumcircles}\:{are}\:{drawn} \\ $$$${to}\:{quadrilaterals}\:{ABCD}\:{and} \\ $$$${APBQ}.\:\:{Find}\:{their}\:{radii}\:{and} \\ $$$${prove}\:{that}\:{PQ}\:{is}\:\bot\:{to}\:{CD}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *