Menu Close

Question-68515




Question Number 68515 by azizullah last updated on 12/Sep/19
Commented by Prithwish sen last updated on 13/Sep/19
[z(z−6)]^2 =[(3+2i)(3+2i−6)]^2 =[(2i)^2 −(3)^2 ]^2   =(−13)^2 =169
$$\left[\mathrm{z}\left(\mathrm{z}−\mathrm{6}\right)\right]^{\mathrm{2}} =\left[\left(\mathrm{3}+\mathrm{2i}\right)\left(\mathrm{3}+\mathrm{2i}−\mathrm{6}\right)\right]^{\mathrm{2}} =\left[\left(\mathrm{2i}\right)^{\mathrm{2}} −\left(\mathrm{3}\right)^{\mathrm{2}} \right]^{\mathrm{2}} \\ $$$$=\left(−\mathrm{13}\right)^{\mathrm{2}} =\mathrm{169} \\ $$
Commented by azizullah last updated on 13/Sep/19
thanks
$$\mathrm{thanks} \\ $$
Answered by Rasheed.Sindhi last updated on 12/Sep/19
=z^2 (z^2 −12z+36)  =(3+2i)^2 ((3+2i)^2 −12(3+2i)+36)  =(9−4+12i)(9−4+12i−36−24i+36)  =(5+12i)(5+12i−24i)  =(5+12i)(5−12i)  =(5)^2 −(12i)^2   =25+144=169
$$=\mathrm{z}^{\mathrm{2}} \left(\mathrm{z}^{\mathrm{2}} −\mathrm{12z}+\mathrm{36}\right) \\ $$$$=\left(\mathrm{3}+\mathrm{2i}\right)^{\mathrm{2}} \left(\left(\mathrm{3}+\mathrm{2i}\right)^{\mathrm{2}} −\mathrm{12}\left(\mathrm{3}+\mathrm{2i}\right)+\mathrm{36}\right) \\ $$$$=\left(\mathrm{9}−\mathrm{4}+\mathrm{12i}\right)\left(\mathrm{9}−\mathrm{4}+\mathrm{12i}−\mathrm{36}−\mathrm{24i}+\mathrm{36}\right) \\ $$$$=\left(\mathrm{5}+\mathrm{12i}\right)\left(\mathrm{5}+\mathrm{12i}−\mathrm{24i}\right) \\ $$$$=\left(\mathrm{5}+\mathrm{12i}\right)\left(\mathrm{5}−\mathrm{12i}\right) \\ $$$$=\left(\mathrm{5}\right)^{\mathrm{2}} −\left(\mathrm{12i}\right)^{\mathrm{2}} \\ $$$$=\mathrm{25}+\mathrm{144}=\mathrm{169} \\ $$
Commented by azizullah last updated on 13/Sep/19
sir! thanks of good work.
$$\boldsymbol{\mathrm{sir}}!\:\boldsymbol{\mathrm{thanks}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{good}}\:\boldsymbol{\mathrm{work}}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *