Menu Close

Question-68767




Question Number 68767 by aliesam last updated on 15/Sep/19
Commented by ~ À ® @ 237 ~ last updated on 15/Sep/19
Let named it  f_n (x)  Let named  ∀ a>0  g(a,x)=∫ (dx/(a+x^2 ))   So  g(a,x)= (1/a)∫  (dx/(1+(x^2 /a))) = (1/( (√a))) ∫ ((d((x/( (√a))) ))/(1+((x/( (√a))))^2 ))   g(a,x)= ((arctan((x/( (√a)))))/( (√a))) +c  Now just ascertain that   ((∂g(a,x))/∂a)=−∫ (dx/((a+x^2 )^2 ))  ((∂^2 g(a,x))/∂a^2 )= ∫ ((2dx)/((a+x^2 )^3 ))   ...... ((∂^n g(a,x))/∂a^n )= ∫ (((−1)^n (n−1))/((a+x^2 )^n )) dx  Finally  ∫ (dx/((a+x^2 )^n )) = (((−1)^n )/(n−1)) ((∂^(n−1) g(a,x))/∂a^(n−1) )  f_n (x)= (((−1)^n )/(n−1)) (∂^(n−1) g/∂a^(n−1) )(1,x)
Letnameditfn(x)Letnameda>0g(a,x)=dxa+x2Sog(a,x)=1adx1+x2a=1ad(xa)1+(xa)2g(a,x)=arctan(xa)a+cNowjustascertainthatg(a,x)a=dx(a+x2)22g(a,x)a2=2dx(a+x2)3ng(a,x)an=(1)n(n1)(a+x2)ndxFinallydx(a+x2)n=(1)nn1n1g(a,x)an1fn(x)=(1)nn1n1gan1(1,x)

Leave a Reply

Your email address will not be published. Required fields are marked *