Question-68767 Tinku Tara June 3, 2023 Integration 0 Comments FacebookTweetPin Question Number 68767 by aliesam last updated on 15/Sep/19 Commented by ~ À ® @ 237 ~ last updated on 15/Sep/19 Letnameditfn(x)Letnamed∀a>0g(a,x)=∫dxa+x2Sog(a,x)=1a∫dx1+x2a=1a∫d(xa)1+(xa)2g(a,x)=arctan(xa)a+cNowjustascertainthat∂g(a,x)∂a=−∫dx(a+x2)2∂2g(a,x)∂a2=∫2dx(a+x2)3……∂ng(a,x)∂an=∫(−1)n(n−1)(a+x2)ndxFinally∫dx(a+x2)n=(−1)nn−1∂n−1g(a,x)∂an−1fn(x)=(−1)nn−1∂n−1g∂an−1(1,x) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: 0-1-ln-x-1-x-2-dx-Next Next post: 0-x-2-1-x-2-4-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.