Menu Close

Question-68783




Question Number 68783 by peter frank last updated on 15/Sep/19
Commented by peter frank last updated on 22/Sep/19
thank you
$${thank}\:{you}\: \\ $$
Commented by ajfour last updated on 15/Sep/19
Commented by peter frank last updated on 21/Sep/19
please sir.continue
$${please}\:{sir}.{continue} \\ $$
Commented by ajfour last updated on 21/Sep/19
let S ′P =a+s ,   SP = a−s  let P (h,k)      ((S ′P)/(SP))=((a+s)/(a−s))  a−s=e((a/e)−h)  a+s=e((a/e)+h)  ⇒ s=eh     ((S ′P)/(SP))=((a+eh)/(a−eh))         ................(i)  (x^2 /a^2 )+(y^2 /b^2 )=1   ⇒  −(dx/dy)=(a^2 /b^2 )((y/x))  slope of normal     =−(dx/dy)∣_P =(a^2 /b^2 )((k/h))       eq. of normal  y−k=(a^2 /b^2 )((k/h))(x−h)  let normal intersect x-axis  at N(0, x_(int) )  x_(int) =h(1−(b^2 /a^2 ))  ((SN)/(S ′N))=((ae−x_(int) )/(x_(int) +ae))=((ae−h(1−(b^2 /a^2 )))/(h(1−(b^2 /a^2 ))+ae))=r_2   ⇒ ((SN)/(S ′N))=((a−eh)/(eh+a))        .............(ii)  from (i) and (ii) we find        ((S ′P)/(SP))=((S ′N)/(SN))  ⇒  PN is angular bisector        of ∠S ′PS .
$${let}\:{S}\:'{P}\:={a}+{s}\:,\:\:\:{SP}\:=\:{a}−{s} \\ $$$${let}\:{P}\:\left({h},{k}\right) \\ $$$$\:\:\:\:\frac{{S}\:'{P}}{{SP}}=\frac{{a}+{s}}{{a}−{s}} \\ $$$${a}−{s}={e}\left(\frac{{a}}{{e}}−{h}\right) \\ $$$${a}+{s}={e}\left(\frac{{a}}{{e}}+{h}\right) \\ $$$$\Rightarrow\:{s}={eh} \\ $$$$\:\:\:\frac{{S}\:'{P}}{{SP}}=\frac{{a}+{eh}}{{a}−{eh}}\:\:\:\:\:\:\:\:\:…………….\left({i}\right) \\ $$$$\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1}\:\:\:\Rightarrow\:\:−\frac{{dx}}{{dy}}=\frac{{a}^{\mathrm{2}} }{{b}^{\mathrm{2}} }\left(\frac{{y}}{{x}}\right) \\ $$$${slope}\:{of}\:{normal} \\ $$$$\:\:\:=−\frac{{dx}}{{dy}}\mid_{{P}} =\frac{{a}^{\mathrm{2}} }{{b}^{\mathrm{2}} }\left(\frac{{k}}{{h}}\right) \\ $$$$\:\:\:\:\:{eq}.\:{of}\:{normal} \\ $$$${y}−{k}=\frac{{a}^{\mathrm{2}} }{{b}^{\mathrm{2}} }\left(\frac{{k}}{{h}}\right)\left({x}−{h}\right) \\ $$$${let}\:{normal}\:{intersect}\:{x}-{axis} \\ $$$${at}\:{N}\left(\mathrm{0},\:{x}_{{int}} \right) \\ $$$${x}_{{int}} ={h}\left(\mathrm{1}−\frac{{b}^{\mathrm{2}} }{{a}^{\mathrm{2}} }\right) \\ $$$$\frac{{SN}}{{S}\:'{N}}=\frac{{ae}−{x}_{{int}} }{{x}_{{int}} +{ae}}=\frac{{ae}−{h}\left(\mathrm{1}−\frac{{b}^{\mathrm{2}} }{{a}^{\mathrm{2}} }\right)}{{h}\left(\mathrm{1}−\frac{{b}^{\mathrm{2}} }{{a}^{\mathrm{2}} }\right)+{ae}}={r}_{\mathrm{2}} \\ $$$$\Rightarrow\:\frac{{SN}}{{S}\:'{N}}=\frac{{a}−{eh}}{{eh}+{a}}\:\:\:\:\:\:\:\:………….\left({ii}\right) \\ $$$${from}\:\left({i}\right)\:{and}\:\left({ii}\right)\:{we}\:{find} \\ $$$$\:\:\:\:\:\:\frac{{S}\:'{P}}{{SP}}=\frac{{S}\:'{N}}{{SN}} \\ $$$$\Rightarrow\:\:{PN}\:{is}\:{angular}\:{bisector} \\ $$$$\:\:\:\:\:\:{of}\:\angle{S}\:'{PS}\:. \\ $$
Commented by peter frank last updated on 22/Sep/19
please help 69230
$${please}\:{help}\:\mathrm{69230} \\ $$
Answered by mr W last updated on 15/Sep/19

Leave a Reply

Your email address will not be published. Required fields are marked *