Menu Close

Question-68783




Question Number 68783 by peter frank last updated on 15/Sep/19
Commented by peter frank last updated on 22/Sep/19
thank you
thankyou
Commented by ajfour last updated on 15/Sep/19
Commented by peter frank last updated on 21/Sep/19
please sir.continue
pleasesir.continue
Commented by ajfour last updated on 21/Sep/19
let S ′P =a+s ,   SP = a−s  let P (h,k)      ((S ′P)/(SP))=((a+s)/(a−s))  a−s=e((a/e)−h)  a+s=e((a/e)+h)  ⇒ s=eh     ((S ′P)/(SP))=((a+eh)/(a−eh))         ................(i)  (x^2 /a^2 )+(y^2 /b^2 )=1   ⇒  −(dx/dy)=(a^2 /b^2 )((y/x))  slope of normal     =−(dx/dy)∣_P =(a^2 /b^2 )((k/h))       eq. of normal  y−k=(a^2 /b^2 )((k/h))(x−h)  let normal intersect x-axis  at N(0, x_(int) )  x_(int) =h(1−(b^2 /a^2 ))  ((SN)/(S ′N))=((ae−x_(int) )/(x_(int) +ae))=((ae−h(1−(b^2 /a^2 )))/(h(1−(b^2 /a^2 ))+ae))=r_2   ⇒ ((SN)/(S ′N))=((a−eh)/(eh+a))        .............(ii)  from (i) and (ii) we find        ((S ′P)/(SP))=((S ′N)/(SN))  ⇒  PN is angular bisector        of ∠S ′PS .
letSP=a+s,SP=asletP(h,k)SPSP=a+sasas=e(aeh)a+s=e(ae+h)s=ehSPSP=a+ehaeh.(i)x2a2+y2b2=1dxdy=a2b2(yx)slopeofnormal=dxdyP=a2b2(kh)eq.ofnormalyk=a2b2(kh)(xh)letnormalintersectxaxisatN(0,xint)xint=h(1b2a2)SNSN=aexintxint+ae=aeh(1b2a2)h(1b2a2)+ae=r2SNSN=aeheh+a.(ii)from(i)and(ii)wefindSPSP=SNSNPNisangularbisectorofSPS.
Commented by peter frank last updated on 22/Sep/19
please help 69230
pleasehelp69230
Answered by mr W last updated on 15/Sep/19

Leave a Reply

Your email address will not be published. Required fields are marked *