Menu Close

Question-6893




Question Number 6893 by Tawakalitu. last updated on 01/Aug/16
Commented by Rasheed Soomro last updated on 02/Aug/16
•Surface area of sphere=4πr^2    Radius of the  sphere =((12)/2)=6 cm  Surface area of sphere=4π(6)^2 =144π..........(i)    •Surface of the cylinder=2πr^2 +2πrh                                   =2π(20)^2 +2π(20)h     [   r=20  (given)  ]                                  =( 800+40h)π.....................(ii)  •According to the question   (i)=(ii)            ( 800+40h)π=144π              800+40h=144                  h=((144−800)/(40))=negative        From 144π we can′t  make  cylinder of radius 20 cm.
$$\bullet{Surface}\:{area}\:{of}\:{sphere}=\mathrm{4}\pi{r}^{\mathrm{2}} \\ $$$$\:{Radius}\:{of}\:{the}\:\:{sphere}\:=\frac{\mathrm{12}}{\mathrm{2}}=\mathrm{6}\:{cm} \\ $$$${Surface}\:{area}\:{of}\:{sphere}=\mathrm{4}\pi\left(\mathrm{6}\right)^{\mathrm{2}} =\mathrm{144}\pi……….\left({i}\right) \\ $$$$ \\ $$$$\bullet{Surface}\:{of}\:{the}\:{cylinder}=\mathrm{2}\pi{r}^{\mathrm{2}} +\mathrm{2}\pi{rh} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{2}\pi\left(\mathrm{20}\right)^{\mathrm{2}} +\mathrm{2}\pi\left(\mathrm{20}\right){h}\:\:\:\:\:\left[\:\:\:{r}=\mathrm{20}\:\:\left({given}\right)\:\:\right] \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\left(\:\mathrm{800}+\mathrm{40}{h}\right)\pi…………………\left({ii}\right) \\ $$$$\bullet{According}\:{to}\:{the}\:{question}\:\:\:\left({i}\right)=\left({ii}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\left(\:\mathrm{800}+\mathrm{40}{h}\right)\pi=\mathrm{144}\pi \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{800}+\mathrm{40}{h}=\mathrm{144} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{h}=\frac{\mathrm{144}−\mathrm{800}}{\mathrm{40}}={negative} \\ $$$$\:\:\:\:\:\:{From}\:\mathrm{144}\pi\:{we}\:{can}'{t}\:\:{make}\:\:{cylinder}\:{of}\:{radius}\:\mathrm{20}\:{cm}. \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$
Commented by Tawakalitu. last updated on 02/Aug/16
Wow thanks
$${Wow}\:{thanks} \\ $$
Answered by sandy_suhendra last updated on 02/Aug/16
I think, we have to use volume not area  So, the volume of ball = the volume of cylinder                                    (4/3)πR^3  = πr^2 h                                 (4/3)π×6^3  = π×20^2 ×h                                               h = 0.72 cm
$${I}\:{think},\:{we}\:{have}\:{to}\:{use}\:{volume}\:{not}\:{area} \\ $$$${So},\:{the}\:{volume}\:{of}\:{ball}\:=\:{the}\:{volume}\:{of}\:{cylinder} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{4}}{\mathrm{3}}\pi{R}^{\mathrm{3}} \:=\:\pi{r}^{\mathrm{2}} {h} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{4}}{\mathrm{3}}\pi×\mathrm{6}^{\mathrm{3}} \:=\:\pi×\mathrm{20}^{\mathrm{2}} ×{h} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{h}\:=\:\mathrm{0}.\mathrm{72}\:{cm} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *