Question Number 69456 by TawaTawa last updated on 23/Sep/19
Commented by TawaTawa last updated on 23/Sep/19
$$\mathrm{Help}\:\mathrm{with}\:\mathrm{number}\:\mathrm{5}\:\mathrm{too}\:\mathrm{sir}.\: \\ $$
Answered by mr W last updated on 23/Sep/19
$${r}={radius}\:{of}\:{smallest}\:{circle} \\ $$$$\mathrm{2}^{\mathrm{2}} +\left(\mathrm{4}−{r}\right)^{\mathrm{2}} =\left(\mathrm{2}+{r}\right)^{\mathrm{2}} \\ $$$$\Rightarrow{r}=\frac{\mathrm{4}}{\mathrm{3}} \\ $$$${A}_{{big}\:{semicircle}} =\frac{\pi×\mathrm{4}^{\mathrm{2}} }{\mathrm{2}}=\mathrm{8}\pi \\ $$$${A}_{{shaded}} =\mathrm{8}\pi−\pi×\mathrm{2}^{\mathrm{2}} −\pi\left(\frac{\mathrm{4}}{\mathrm{3}}\right)^{\mathrm{2}} =\frac{\mathrm{20}\pi}{\mathrm{9}} \\ $$$${ratio}=\frac{\mathrm{20}\pi}{\mathrm{9}×\mathrm{8}\pi}=\frac{\mathrm{5}}{\mathrm{18}} \\ $$
Commented by TawaTawa last updated on 23/Sep/19
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}.\:\mathrm{I}\:\mathrm{appreciate}. \\ $$
Commented by TawaTawa last updated on 18/Oct/19
$$\mathrm{Sir},\:\:\mathrm{This}\:\mathrm{first}\:\mathrm{step}\:\mathrm{is}\:\mathrm{not}\:\mathrm{clear}\:\mathrm{to}\:\mathrm{me}.\:\mathrm{How}\:\mathrm{you}\:\mathrm{got}\:\mathrm{it}. \\ $$$$\mathrm{Help},\:\mathrm{thanks}\:\mathrm{sir}. \\ $$
Commented by mr W last updated on 18/Oct/19
Commented by TawaTawa last updated on 18/Oct/19
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}. \\ $$
Commented by TawaTawa last updated on 18/Oct/19
$$\mathrm{I}\:\mathrm{appreciate}\:\mathrm{your}\:\mathrm{time}\:\mathrm{and}\:\mathrm{thanks}\:\mathrm{for}\:\mathrm{everytime} \\ $$