Menu Close

Question-69594




Question Number 69594 by ahmadshahhimat775@gmail.com last updated on 25/Sep/19
Answered by MJS last updated on 25/Sep/19
2≤n≤4: 2^(n!) <2^n !  5≤n: 2^(n!) >2^n !  ln 2^(n!)  =n! ln 2 ⇒ adding n! numbers ln 2  ln (2^n !) =Σ_(k=1) ^2^n  ln k ⇒ adding 2^n  numbers ≤ n ln 2  n! ln 2 <>^(?)  2^n n ln 2  n! <>^(?)  2^n n  n≥6 ⇒ n!>2^n n ⇒ ... ⇒ 2^(100!) >2^(100) !
$$\mathrm{2}\leqslant{n}\leqslant\mathrm{4}:\:\mathrm{2}^{{n}!} <\mathrm{2}^{{n}} ! \\ $$$$\mathrm{5}\leqslant{n}:\:\mathrm{2}^{{n}!} >\mathrm{2}^{{n}} ! \\ $$$$\mathrm{ln}\:\mathrm{2}^{{n}!} \:={n}!\:\mathrm{ln}\:\mathrm{2}\:\Rightarrow\:\mathrm{adding}\:{n}!\:\mathrm{numbers}\:\mathrm{ln}\:\mathrm{2} \\ $$$$\mathrm{ln}\:\left(\mathrm{2}^{\mathrm{n}} !\right)\:=\underset{{k}=\mathrm{1}} {\overset{\mathrm{2}^{{n}} } {\sum}}\mathrm{ln}\:{k}\:\Rightarrow\:\mathrm{adding}\:\mathrm{2}^{{n}} \:\mathrm{numbers}\:\leqslant\:{n}\:\mathrm{ln}\:\mathrm{2} \\ $$$${n}!\:\mathrm{ln}\:\mathrm{2}\:\overset{?} {<>}\:\mathrm{2}^{{n}} {n}\:\mathrm{ln}\:\mathrm{2} \\ $$$${n}!\:\overset{?} {<>}\:\mathrm{2}^{{n}} {n} \\ $$$${n}\geqslant\mathrm{6}\:\Rightarrow\:{n}!>\mathrm{2}^{{n}} {n}\:\Rightarrow\:…\:\Rightarrow\:\mathrm{2}^{\mathrm{100}!} >\mathrm{2}^{\mathrm{100}} ! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *