Menu Close

Question-69873




Question Number 69873 by Masumsiddiqui399@gmail.com last updated on 28/Sep/19
Commented by mathmax by abdo last updated on 28/Sep/19
P_(n−1) =Π_(k=1) ^(n−1) (1−z_k ) =Π_(k=1) ^(n−1) (1−e^((i2kπ)/n) )  =Π_(k=1) ^(n−1) (1−cos(((2kπ)/n))−isin(((2kπ)/n)))  =Π_(k=1) ^(n−1) (2sin^2 (((kπ)/n))−2isin(((kπ)/n))cos(((kπ)/n)))  =Π_(k=1) ^(n−1) (−2isin(((kπ)/n)))e^((ikπ)/n)  =(−2i)^(n−1)  Π_(k=1) ^(n−1) sin(((kπ)/n))e^(((iπ)/n)Σ_(k=1) ^(n−1) k)   =(−2i)^(n−1)  Π_(k=1) ^(n−1)  sin(((kπ)/n)) e^(((iπ)/n)(((n−1)n)/2))   =(−2i)^(n−1)  Π_(k=1) ^(n−1) sin(((kπ)/n))(i)^(n−1)   =2^(n−1)  Π_(k=1) ^(n−1)  sin(((kπ)/n))
$${P}_{{n}−\mathrm{1}} =\prod_{{k}=\mathrm{1}} ^{{n}−\mathrm{1}} \left(\mathrm{1}−{z}_{{k}} \right)\:=\prod_{{k}=\mathrm{1}} ^{{n}−\mathrm{1}} \left(\mathrm{1}−{e}^{\frac{{i}\mathrm{2}{k}\pi}{{n}}} \right) \\ $$$$=\prod_{{k}=\mathrm{1}} ^{{n}−\mathrm{1}} \left(\mathrm{1}−{cos}\left(\frac{\mathrm{2}{k}\pi}{{n}}\right)−{isin}\left(\frac{\mathrm{2}{k}\pi}{{n}}\right)\right) \\ $$$$=\prod_{{k}=\mathrm{1}} ^{{n}−\mathrm{1}} \left(\mathrm{2}{sin}^{\mathrm{2}} \left(\frac{{k}\pi}{{n}}\right)−\mathrm{2}{isin}\left(\frac{{k}\pi}{{n}}\right){cos}\left(\frac{{k}\pi}{{n}}\right)\right) \\ $$$$=\prod_{{k}=\mathrm{1}} ^{{n}−\mathrm{1}} \left(−\mathrm{2}{isin}\left(\frac{{k}\pi}{{n}}\right)\right){e}^{\frac{{ik}\pi}{{n}}} \:=\left(−\mathrm{2}{i}\right)^{{n}−\mathrm{1}} \:\prod_{{k}=\mathrm{1}} ^{{n}−\mathrm{1}} {sin}\left(\frac{{k}\pi}{{n}}\right){e}^{\frac{{i}\pi}{{n}}\sum_{{k}=\mathrm{1}} ^{{n}−\mathrm{1}} {k}} \\ $$$$=\left(−\mathrm{2}{i}\right)^{{n}−\mathrm{1}} \:\prod_{{k}=\mathrm{1}} ^{{n}−\mathrm{1}} \:{sin}\left(\frac{{k}\pi}{{n}}\right)\:{e}^{\frac{{i}\pi}{{n}}\frac{\left({n}−\mathrm{1}\right){n}}{\mathrm{2}}} \\ $$$$=\left(−\mathrm{2}{i}\right)^{{n}−\mathrm{1}} \:\prod_{{k}=\mathrm{1}} ^{{n}−\mathrm{1}} {sin}\left(\frac{{k}\pi}{{n}}\right)\left({i}\right)^{{n}−\mathrm{1}} \\ $$$$=\mathrm{2}^{{n}−\mathrm{1}} \:\prod_{{k}=\mathrm{1}} ^{{n}−\mathrm{1}} \:{sin}\left(\frac{{k}\pi}{{n}}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *