Question-7013 Tinku Tara June 3, 2023 None 0 Comments FacebookTweetPin Question Number 7013 by Master Moon last updated on 06/Aug/16 Commented by Yozzis last updated on 06/Aug/16 (1−x)n=∑nk=0(nk)(−1)kxk=1+∑nk=1(nk)(−1)kxk(x∈R){Binomialtheorem)⇒∫10(1−x)ndx=∫10{1−(n1)x+(n2)x2−(n3)x3+…+(nn)(−1)nxn}dx∫abf(x)dx=−∫baf(x)dx(1−x)n+1n+1∣01=−[x−12(n1)x2+13(n2)x3−14(n3)x4+…+1n+1(−1)n(nn)xn+1]01(1−1n+1−1n+1n+1)=−(1−12(n1)+13(n3)−14(n4)+…+(−1)nn+1(nn))−1n+1=−1+12(n1)−13(n2)+14(n3)+…+(−1)n+1n+1(nn)12(n1)−13(n2)+14(n3)+…+(−1)n+1n+1(nn)=nn+1 Answered by Yozzii last updated on 08/Aug/16 Checkforananswerinthecomments. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: 0-pi-2-ln-ln-2-sin-pi-2-ln-2-sin-ln-cos-tan-d-Next Next post: 2x-2-1-x-4-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.