Menu Close

Question-7013




Question Number 7013 by Master Moon last updated on 06/Aug/16
Commented by Yozzis last updated on 06/Aug/16
(1−x)^n =Σ_(k=0) ^n  ((n),(k) )(−1)^k x^k =1+Σ_(k=1) ^n  ((n),(k) )(−1)^k x^k     (x∈R)  {Binomial theorem)  ⇒∫_1 ^0 (1−x)^n dx=∫_1 ^0 {1− ((n),(1) ) x+ ((n),(2) ) x^2 − ((n),(3) ) x^3 +...+ ((n),(n) ) (−1)^n x^n }dx  ∫_a ^b f(x)dx=−∫_b ^a f(x)dx  (((1−x)^(n+1) )/(n+1))∣_0 ^1 =−[x−(1/2) ((n),(1) ) x^2 +(1/3) ((n),(2) ) x^3 −(1/4) ((n),(3) ) x^4 +...+(1/(n+1))(−1)^n  ((n),(n) ) x^(n+1) ]_0 ^1   (((1−1)/(n+1))−(1^(n+1) /(n+1)))=−(1−(1/2) ((n),(1) )+(1/3) ((n),(3) )−(1/4) ((n),(4) )+...+(((−1)^n )/(n+1)) ((n),(n) ))  −(1/(n+1))=−1+(1/2) ((n),(1) ) −(1/3) ((n),(2) ) +(1/4) ((n),(3) ) +...+(((−1)^(n+1) )/(n+1)) ((n),(n) )  (1/2) ((n),(1) ) −(1/3) ((n),(2) ) +(1/4) ((n),(3) ) +...+(((−1)^(n+1) )/(n+1)) ((n),(n) )=(n/(n+1))
(1x)n=nk=0(nk)(1)kxk=1+nk=1(nk)(1)kxk(xR){Binomialtheorem)10(1x)ndx=10{1(n1)x+(n2)x2(n3)x3++(nn)(1)nxn}dxabf(x)dx=baf(x)dx(1x)n+1n+101=[x12(n1)x2+13(n2)x314(n3)x4++1n+1(1)n(nn)xn+1]01(11n+11n+1n+1)=(112(n1)+13(n3)14(n4)++(1)nn+1(nn))1n+1=1+12(n1)13(n2)+14(n3)++(1)n+1n+1(nn)12(n1)13(n2)+14(n3)++(1)n+1n+1(nn)=nn+1
Answered by Yozzii last updated on 08/Aug/16
Check for an answer in the comments.
Checkforananswerinthecomments.

Leave a Reply

Your email address will not be published. Required fields are marked *