Question Number 70162 by TawaTawa last updated on 01/Oct/19
Answered by mind is power last updated on 01/Oct/19
$$\Rightarrow\mathrm{1}=\left({a}+{b}\right)\left(\frac{{sin}^{\mathrm{4}} \left(\theta\right)}{{a}}+\frac{{cos}^{\mathrm{4}} \left(\theta\right)}{{b}}\right)…{S} \\ $$$$\Rightarrow\frac{{b}}{{a}}{Sin}^{\mathrm{4}} \left(\theta\right)+\frac{{a}}{{b}}{cos}^{\mathrm{4}} \left(\theta\right)+{cos}^{\mathrm{4}} \left(\theta\right)+{sin}^{\mathrm{4}} \left(\theta\right)=\mathrm{1} \\ $$$${t}=\frac{{a}}{{b}} \\ $$$$\Rightarrow{tsin}^{\mathrm{4}} \left(\theta\right)+\frac{{cos}^{\mathrm{4}} \left(\theta\right)}{{t}}=\mathrm{1}−\left(\boldsymbol{{cos}}^{\mathrm{4}} \left(\boldsymbol{\theta}\right)+{sin}^{\mathrm{4}} \left(\theta\right)\right) \\ $$$$\left.\Rightarrow{tsin}^{\mathrm{4}} \left(\theta\right)+\frac{{cos}^{\mathrm{4}} \left(\theta\right)}{{t}}=\mathrm{2}{cos}^{\mathrm{2}} \theta\right){sin}^{\mathrm{2}} \left(\theta\right) \\ $$$$\Rightarrow{t}\:\frac{{sin}^{\mathrm{2}} \left(\theta\right)}{{cos}^{\mathrm{2}} \left(\theta\right)}+\frac{{cos}^{\mathrm{2}} \left(\theta\right)}{{tsin}^{\mathrm{2}} \left(\theta\right)}=\mathrm{2} \\ $$$$\Rightarrow{t}.{tan}^{\mathrm{2}} \left(\theta\right)+\frac{\mathrm{1}}{{t}\:{tan}^{\mathrm{2}} \left(\theta\right)}=\mathrm{2} \\ $$$${let}\:{u}={t}\:{tan}^{\mathrm{2}} \left(\theta\right) \\ $$$$\Rightarrow{u}+\frac{\mathrm{1}}{{u}}=\mathrm{2}\:\:\Rightarrow\left(\sqrt{{u}}\:−\frac{\mathrm{1}}{\:\sqrt{{u}}}\right)^{\mathrm{2}} =\mathrm{0}\Rightarrow{u}=\mathrm{1} \\ $$$${t}\:.{tan}^{\mathrm{2}} \left(\theta\right)=\mathrm{1}\Rightarrow\frac{{a}}{{b}}=\frac{{cos}^{\mathrm{2}} \left(\theta\right)}{{sin}^{\mathrm{2}} \left(\theta\right)}=\frac{\mathrm{1}}{{sin}^{\mathrm{2}} \left(\theta\right)}−\mathrm{1} \\ $$$$\Rightarrow{Sin}^{\mathrm{2}} \left(\theta\right)=\frac{{b}}{{a}+{b}} \\ $$$${cos}^{\mathrm{2}} \left(\theta\right)=\frac{{a}}{{a}+{b}} \\ $$$${Sin}^{\mathrm{8}} \left(\theta\right)=\frac{{b}^{\mathrm{4}} }{\left({a}+{b}\right)^{\mathrm{4}} } \\ $$$${cos}^{\mathrm{8}} \left(\theta\right)=\frac{{a}^{\mathrm{4}} }{\left({a}+{b}\right)^{\mathrm{3}} } \\ $$$$\frac{{Sin}^{\mathrm{8}} \left(\theta\right)}{{a}^{\mathrm{3}} }+\frac{{cos}^{\mathrm{8}} \left(\theta\right)}{{b}^{\mathrm{3}} }=\frac{{b}^{\mathrm{4}} }{{a}^{\mathrm{3}} \left({a}+{b}\right)^{\mathrm{4}} }+\frac{{a}^{\mathrm{4}} }{{b}^{\mathrm{3}} \left({a}+{b}\right)^{\mathrm{4}} }=\frac{\mathrm{1}}{\left({a}+{b}\right)^{\mathrm{4}} }\left(\frac{{b}^{\mathrm{4}} }{{a}^{\mathrm{3}} }+\frac{{a}^{\mathrm{4}} }{{b}^{\mathrm{3}} }\right)..{H} \\ $$$$\left(\frac{{b}^{\mathrm{3}} }{{a}^{\mathrm{3}} }+\frac{{a}^{\mathrm{3}} }{{b}^{\mathrm{3}} }\right)^{} =\left(\frac{{b}}{{a}}+\frac{{a}}{{b}}\right)^{\mathrm{3}} −\mathrm{3}\left(\frac{{a}}{{b}}+\frac{{b}}{{a}}\right)=\mathrm{8}−\mathrm{6}=\mathrm{2} \\ $$$$\frac{{a}^{\mathrm{2}} }{{b}^{\mathrm{2}} }+\frac{{b}^{\mathrm{2}} }{{a}^{\mathrm{2}} }=\left(\frac{{a}}{{b}}+\frac{{b}}{{a}}\right)^{\mathrm{2}} −\mathrm{2}=\mathrm{2} \\ $$$$\frac{{b}^{\mathrm{4}} }{{a}^{\mathrm{3}} }+\frac{{a}^{\mathrm{4}} }{{b}^{\mathrm{3}} }=\left({a}+{b}\right)\left(\frac{{b}^{\mathrm{3}} }{{a}^{\mathrm{3}} }+\frac{{a}^{\mathrm{3}} }{{b}^{\mathrm{3}} }\:−\frac{{b}^{\mathrm{2}} }{{a}^{\mathrm{2}} }−\frac{{a}^{\mathrm{2}} }{{b}^{\mathrm{2}} }\:+\frac{{b}}{{a}}+\frac{{a}}{{b}}−\mathrm{1}\right)=\left({a}+{b}\right)\left[\mathrm{2}−\mathrm{2}+\mathrm{2}−\mathrm{1}\right)=\left({a}+{b}\right) \\ $$$${H}=\frac{\mathrm{1}}{\left({a}+{b}\right)^{\mathrm{4}} }.\left({a}+{b}\right)=\frac{\mathrm{1}}{\left({a}+{b}\right)^{\mathrm{3}} } \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$
Commented by TawaTawa last updated on 01/Oct/19
$$\mathrm{Wow},\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$
Commented by mind is power last updated on 01/Oct/19
$${y}'{re}\:{Welcom} \\ $$$$ \\ $$