Menu Close

Question-70162




Question Number 70162 by TawaTawa last updated on 01/Oct/19
Answered by mind is power last updated on 01/Oct/19
⇒1=(a+b)(((sin^4 (θ))/a)+((cos^4 (θ))/b))...S  ⇒(b/a)Sin^4 (θ)+(a/b)cos^4 (θ)+cos^4 (θ)+sin^4 (θ)=1  t=(a/b)  ⇒tsin^4 (θ)+((cos^4 (θ))/t)=1−(cos^4 (𝛉)+sin^4 (θ))  ⇒tsin^4 (θ)+((cos^4 (θ))/t)=2cos^2 θ)sin^2 (θ)  ⇒t ((sin^2 (θ))/(cos^2 (θ)))+((cos^2 (θ))/(tsin^2 (θ)))=2  ⇒t.tan^2 (θ)+(1/(t tan^2 (θ)))=2  let u=t tan^2 (θ)  ⇒u+(1/u)=2  ⇒((√u) −(1/( (√u))))^2 =0⇒u=1  t .tan^2 (θ)=1⇒(a/b)=((cos^2 (θ))/(sin^2 (θ)))=(1/(sin^2 (θ)))−1  ⇒Sin^2 (θ)=(b/(a+b))  cos^2 (θ)=(a/(a+b))  Sin^8 (θ)=(b^4 /((a+b)^4 ))  cos^8 (θ)=(a^4 /((a+b)^3 ))  ((Sin^8 (θ))/a^3 )+((cos^8 (θ))/b^3 )=(b^4 /(a^3 (a+b)^4 ))+(a^4 /(b^3 (a+b)^4 ))=(1/((a+b)^4 ))((b^4 /a^3 )+(a^4 /b^3 ))..H  ((b^3 /a^3 )+(a^3 /b^3 ))^ =((b/a)+(a/b))^3 −3((a/b)+(b/a))=8−6=2  (a^2 /b^2 )+(b^2 /a^2 )=((a/b)+(b/a))^2 −2=2  (b^4 /a^3 )+(a^4 /b^3 )=(a+b)((b^3 /a^3 )+(a^3 /b^3 ) −(b^2 /a^2 )−(a^2 /b^2 ) +(b/a)+(a/b)−1)=(a+b)[2−2+2−1)=(a+b)  H=(1/((a+b)^4 )).(a+b)=(1/((a+b)^3 ))
1=(a+b)(sin4(θ)a+cos4(θ)b)SbaSin4(θ)+abcos4(θ)+cos4(θ)+sin4(θ)=1t=abtsin4(θ)+cos4(θ)t=1(cos4(θ)+sin4(θ))tsin4(θ)+cos4(θ)t=2cos2θ)sin2(θ)tsin2(θ)cos2(θ)+cos2(θ)tsin2(θ)=2t.tan2(θ)+1ttan2(θ)=2letu=ttan2(θ)u+1u=2(u1u)2=0u=1t.tan2(θ)=1ab=cos2(θ)sin2(θ)=1sin2(θ)1Sin2(θ)=ba+bcos2(θ)=aa+bSin8(θ)=b4(a+b)4cos8(θ)=a4(a+b)3Sin8(θ)a3+cos8(θ)b3=b4a3(a+b)4+a4b3(a+b)4=1(a+b)4(b4a3+a4b3)..H(b3a3+a3b3)=(ba+ab)33(ab+ba)=86=2a2b2+b2a2=(ab+ba)22=2b4a3+a4b3=(a+b)(b3a3+a3b3b2a2a2b2+ba+ab1)=(a+b)[22+21)=(a+b)H=1(a+b)4.(a+b)=1(a+b)3
Commented by TawaTawa last updated on 01/Oct/19
Wow, God bless you sir
Wow,Godblessyousir
Commented by mind is power last updated on 01/Oct/19
y′re Welcom
yreWelcom

Leave a Reply

Your email address will not be published. Required fields are marked *