Menu Close

Question-70395




Question Number 70395 by ajfour last updated on 04/Oct/19
Commented by ajfour last updated on 04/Oct/19
Q.70159    (attempt to resolve)
$${Q}.\mathrm{70159}\:\:\:\:\left({attempt}\:{to}\:{resolve}\right) \\ $$
Answered by ajfour last updated on 04/Oct/19
Commented by ajfour last updated on 04/Oct/19
let θ/2=φ  As moment about left end is zero;  R(2Lsin φ)=2MgLsin φ+mg(L+b)sin φ  ⇒ R=Mg+((mg)/2)(1+(b/L))     As moment about right end is zero;        N=Mg+((mg)/2)(1−(b/L))  Torque on left half about hinge:      NLsin φ−Mg((L/2)sin φ)=mga  ⇒ sin φ=((2m(a/L))/(M+m(1−b/L)))  but  bcos 2φ=a ;  let M=μm  ⇒  (μ+1−(b/L))sin φ=2((b/L))cos 2φ  let  sin φ=t ,  b/L=f  1−2t^2 −(((μ+1)/f)−1)(t/2)=0    ⇒  t^2 +(((μ+1)/f)−1)(t/4)−(1/2)=0  ..(I)  ________________________  Also considering torque of  right half about hinge:     RLsin φ=2mgbcos 2φ+Mg((L/2))sin φ     (R−((Mg)/2))Lsin φ=2mgbcos 2φ  [M+m(1+(b/L))]t=4m((b/L))(1−2t^2 )  ⇒    (μ+1+(b/L))t=4((b/L))(1−2t^2 )  ⇒ 1−2t^2 −(((μ+1)/f)+1)(t/4)=0      t^2 +(((μ+1)/(2f))+(1/2))(t/4)−(1/2)=0  For agreement of (I)& (II)    ((μ+1)/f)−1=((μ+1)/(2f))+(1/2)  ⇒   ((μ+1)/f)=3    (b/L)=((μ+1)/3) = (1/3)(1+(M/m))  ; Now    t^2 +(t/2)−(1/2)=0   ⇒ t=sin φ=(1/2) ,  θ=2φ =60° .
$${let}\:\theta/\mathrm{2}=\phi \\ $$$${As}\:{moment}\:{about}\:{left}\:{end}\:{is}\:{zero}; \\ $$$${R}\left(\mathrm{2}{L}\mathrm{sin}\:\phi\right)=\mathrm{2}{MgL}\mathrm{sin}\:\phi+{mg}\left({L}+{b}\right)\mathrm{sin}\:\phi \\ $$$$\Rightarrow\:{R}={Mg}+\frac{{mg}}{\mathrm{2}}\left(\mathrm{1}+\frac{{b}}{{L}}\right)\:\:\: \\ $$$${As}\:{moment}\:{about}\:{right}\:{end}\:{is}\:{zero}; \\ $$$$\:\:\:\:\:\:{N}={Mg}+\frac{{mg}}{\mathrm{2}}\left(\mathrm{1}−\frac{{b}}{{L}}\right) \\ $$$${Torque}\:{on}\:{left}\:{half}\:{about}\:{hinge}: \\ $$$$\:\:\:\:{NL}\mathrm{sin}\:\phi−{Mg}\left(\frac{{L}}{\mathrm{2}}\mathrm{sin}\:\phi\right)={mga} \\ $$$$\Rightarrow\:\mathrm{sin}\:\phi=\frac{\mathrm{2}{m}\left({a}/{L}\right)}{{M}+{m}\left(\mathrm{1}−{b}/{L}\right)} \\ $$$${but}\:\:{b}\mathrm{cos}\:\mathrm{2}\phi={a}\:;\:\:{let}\:{M}=\mu{m} \\ $$$$\Rightarrow\:\:\left(\mu+\mathrm{1}−\frac{{b}}{{L}}\right)\mathrm{sin}\:\phi=\mathrm{2}\left(\frac{{b}}{{L}}\right)\mathrm{cos}\:\mathrm{2}\phi \\ $$$${let}\:\:\mathrm{sin}\:\phi={t}\:,\:\:{b}/{L}={f} \\ $$$$\mathrm{1}−\mathrm{2}{t}^{\mathrm{2}} −\left(\frac{\mu+\mathrm{1}}{{f}}−\mathrm{1}\right)\frac{{t}}{\mathrm{2}}=\mathrm{0}\:\: \\ $$$$\Rightarrow\:\:{t}^{\mathrm{2}} +\left(\frac{\mu+\mathrm{1}}{{f}}−\mathrm{1}\right)\frac{{t}}{\mathrm{4}}−\frac{\mathrm{1}}{\mathrm{2}}=\mathrm{0}\:\:..\left({I}\right) \\ $$$$\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \\ $$$${Also}\:{considering}\:{torque}\:{of} \\ $$$${right}\:{half}\:{about}\:{hinge}: \\ $$$$\:\:\:{RL}\mathrm{sin}\:\phi=\mathrm{2}{mgb}\mathrm{cos}\:\mathrm{2}\phi+{Mg}\left(\frac{{L}}{\mathrm{2}}\right)\mathrm{sin}\:\phi \\ $$$$\:\:\:\left({R}−\frac{{Mg}}{\mathrm{2}}\right){L}\mathrm{sin}\:\phi=\mathrm{2}{mgb}\mathrm{cos}\:\mathrm{2}\phi \\ $$$$\left[{M}+{m}\left(\mathrm{1}+\frac{{b}}{{L}}\right)\right]{t}=\mathrm{4}{m}\left(\frac{{b}}{{L}}\right)\left(\mathrm{1}−\mathrm{2}{t}^{\mathrm{2}} \right) \\ $$$$\Rightarrow \\ $$$$\:\:\left(\mu+\mathrm{1}+\frac{{b}}{{L}}\right){t}=\mathrm{4}\left(\frac{{b}}{{L}}\right)\left(\mathrm{1}−\mathrm{2}{t}^{\mathrm{2}} \right) \\ $$$$\Rightarrow\:\mathrm{1}−\mathrm{2}{t}^{\mathrm{2}} −\left(\frac{\mu+\mathrm{1}}{{f}}+\mathrm{1}\right)\frac{{t}}{\mathrm{4}}=\mathrm{0}\:\: \\ $$$$\:\:{t}^{\mathrm{2}} +\left(\frac{\mu+\mathrm{1}}{\mathrm{2}{f}}+\frac{\mathrm{1}}{\mathrm{2}}\right)\frac{{t}}{\mathrm{4}}−\frac{\mathrm{1}}{\mathrm{2}}=\mathrm{0} \\ $$$${For}\:{agreement}\:{of}\:\left({I}\right)\&\:\left({II}\right) \\ $$$$\:\:\frac{\mu+\mathrm{1}}{{f}}−\mathrm{1}=\frac{\mu+\mathrm{1}}{\mathrm{2}{f}}+\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\Rightarrow\:\:\:\frac{\mu+\mathrm{1}}{{f}}=\mathrm{3} \\ $$$$\:\:\frac{{b}}{{L}}=\frac{\mu+\mathrm{1}}{\mathrm{3}}\:=\:\frac{\mathrm{1}}{\mathrm{3}}\left(\mathrm{1}+\frac{{M}}{{m}}\right)\:\:;\:{Now} \\ $$$$\:\:{t}^{\mathrm{2}} +\frac{{t}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}=\mathrm{0} \\ $$$$\:\Rightarrow\:{t}=\mathrm{sin}\:\phi=\frac{\mathrm{1}}{\mathrm{2}}\:,\:\:\theta=\mathrm{2}\phi\:=\mathrm{60}°\:. \\ $$
Commented by mr W last updated on 04/Oct/19
answer is correct sir!  it′s obvious that   90°−θ=(θ/2) ⇒ θ=60°
$${answer}\:{is}\:{correct}\:{sir}! \\ $$$${it}'{s}\:{obvious}\:{that}\: \\ $$$$\mathrm{90}°−\theta=\frac{\theta}{\mathrm{2}}\:\Rightarrow\:\theta=\mathrm{60}° \\ $$
Commented by mr W last updated on 04/Oct/19
interesting to see that θ is always 60°.  (b/L)=(1/3)(1+(M/m))≥(1/3), ≤1  with M=0: (b/L)=(1/3)  with M=2m: (b/L)=1  ⇒0≤M≤2m
$${interesting}\:{to}\:{see}\:{that}\:\theta\:{is}\:{always}\:\mathrm{60}°. \\ $$$$\frac{{b}}{{L}}=\frac{\mathrm{1}}{\mathrm{3}}\left(\mathrm{1}+\frac{{M}}{{m}}\right)\geqslant\frac{\mathrm{1}}{\mathrm{3}},\:\leqslant\mathrm{1} \\ $$$${with}\:{M}=\mathrm{0}:\:\frac{{b}}{{L}}=\frac{\mathrm{1}}{\mathrm{3}} \\ $$$${with}\:{M}=\mathrm{2}{m}:\:\frac{{b}}{{L}}=\mathrm{1} \\ $$$$\Rightarrow\mathrm{0}\leqslant{M}\leqslant\mathrm{2}{m} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *