Menu Close

Question-7087




Question Number 7087 by Tawakalitu. last updated on 10/Aug/16
Commented by Yozzii last updated on 10/Aug/16
W=2^(129) 3^(81) 5^(131)   X=2^(127) 3^(81) 5^(131)   Y=2^(126) 3^(82) 5^(131)   Z=2^(125) 3^(82) 5^(132)   −−−−−−−−−−−−−−−−−−−−−−−  2^(127) <2^(129)   ⇒2^(127) 3^(81) 5^(131) <2^(129) 3^(81) 5^(131)   X<W  W−Y=2^(126) 3^(81) 5^(131) (2^3 −3)>0⇒W>Y  X−Y=2^(126) 3^(81) 5^(131) (2−3)<0⇒Y>X  ∴W>Y>X  W−Z=2^(125) 3^(81) 5^(131) (2^4 −3×5)>0⇒W>Z  Z−Y=2^(125) 3^(82) 5^(131) (5−2)>0⇒Z>Y>X    ∴ X<Y<Z<W
W=21293815131X=21273815131Y=21263825131Z=212538251322127<212921273815131<21293815131X<WWY=21263815131(233)>0W>YXY=21263815131(23)<0Y>XW>Y>XWZ=21253815131(243×5)>0W>ZZY=21253825131(52)>0Z>Y>XX<Y<Z<W
Commented by Tawakalitu. last updated on 10/Aug/16
Great, i appreciate .. thanks so much.
Great,iappreciate..thankssomuch.
Commented by Rasheed Soomro last updated on 10/Aug/16
Simple approach_(−)   W=2^(129) 3^(81) 5^(131)   X=2^(127) 3^(81) 5^(131)   Y=2^(126) 3^(82) 5^(131)   Z=2^(125) 3^(82) 5^(132)   −−−−−−−−−−−−−−−−−  Dividing by same positive number  will not affect inequality/equality.  So dividing by 2^(125) ×3^(81) ×5^(131)  (GCD) to W,  X,Y and Z to obtain new quantities  W ′,X^( ′) ,Y^( ′)  and Z^′  respectively.  W ′=2^4 =16  X′=2^2 =4  Y ′=2×3=6  Z ′=3×5=15  Clearly 4<6<15<16  So,        X′<Y ′<Z ′<W ′  Or           X<Y<Z<W
SimpleapproachW=21293815131X=21273815131Y=21263825131Z=21253825132Dividingbysamepositivenumberwillnotaffectinequality/equality.Sodividingby2125×381×5131(GCD)toW,X,YandZtoobtainnewquantitiesW,X,YandZrespectively.W=24=16X=22=4Y=2×3=6Z=3×5=15Clearly4<6<15<16So,X<Y<Z<WOrX<Y<Z<W
Commented by Tawakalitu. last updated on 10/Aug/16
Wow .. i really appreciate your effort... Thanks so much
Wow..ireallyappreciateyoureffortThankssomuch

Leave a Reply

Your email address will not be published. Required fields are marked *