Menu Close

Question-70886




Question Number 70886 by Omer Alattas last updated on 09/Oct/19
Commented by mathmax by abdo last updated on 10/Oct/19
1−cosu ∼(u^2 /2) and sinu ∼ u if u∈V(0) ⇒  1−cos(((πt)/3))∼(((((πt)/3))^2 )/2) =π^2 (t^2 /(18)) and sin(((πt)/3))∼((πt)/3) ....
$$\mathrm{1}−{cosu}\:\sim\frac{{u}^{\mathrm{2}} }{\mathrm{2}}\:{and}\:{sinu}\:\sim\:{u}\:{if}\:{u}\in{V}\left(\mathrm{0}\right)\:\Rightarrow \\ $$$$\mathrm{1}−{cos}\left(\frac{\pi{t}}{\mathrm{3}}\right)\sim\frac{\left(\frac{\pi{t}}{\mathrm{3}}\right)^{\mathrm{2}} }{\mathrm{2}}\:=\pi^{\mathrm{2}} \frac{{t}^{\mathrm{2}} }{\mathrm{18}}\:{and}\:{sin}\left(\frac{\pi{t}}{\mathrm{3}}\right)\sim\frac{\pi{t}}{\mathrm{3}}\:…. \\ $$
Commented by mathmax by abdo last updated on 09/Oct/19
let f(x)=((1−4sin^2 (((πx)/6)))/(1−x^2 )) ⇒f(x)=((1−4((1−cos(((πx)/3)))/2))/(1−x^2 ))  =((1−2(1−cos(((πx)/3))))/(1−x^2 )) =((2cos(((πx)/3))−1)/(1−x^2 )) =((1−2cos(((πx)/3)))/(x^2 −1))  changement x−1=t give f(x)=g(t)=((1−2cos((π/3)(1+t)))/(t(t+2)))  =((1−2cos((π/3)+((πt)/3)))/(t(t+2))) =((1−2{(1/2)cos(((πt)/3))−((√3)/2)sin(((πt)/3))})/(t(t+2)))  =((1−cos(((πt)/3))+(√3)sin(((πt)/3)))/(t(t+2)))  x→1 ⇔t→0  so   1−co(((πt)/3))∼(((((πt)/3))^2 )/2)  and sin(((πt)/3))∼((πt)/3) ⇒  g(t)∼  ((((π^2 t^2 )/(18)) +(√3)×((πt)/3))/(t(t+2))) ∼  ((((π^2 t)/(18))+((π(√3))/3))/(t+2)) →((π(√3))/6) ⇒  lim_(x→1) f(x)=((π(√3))/6)
$${let}\:{f}\left({x}\right)=\frac{\mathrm{1}−\mathrm{4}{sin}^{\mathrm{2}} \left(\frac{\pi{x}}{\mathrm{6}}\right)}{\mathrm{1}−{x}^{\mathrm{2}} }\:\Rightarrow{f}\left({x}\right)=\frac{\mathrm{1}−\mathrm{4}\frac{\mathrm{1}−{cos}\left(\frac{\pi{x}}{\mathrm{3}}\right)}{\mathrm{2}}}{\mathrm{1}−{x}^{\mathrm{2}} } \\ $$$$=\frac{\mathrm{1}−\mathrm{2}\left(\mathrm{1}−{cos}\left(\frac{\pi{x}}{\mathrm{3}}\right)\right)}{\mathrm{1}−{x}^{\mathrm{2}} }\:=\frac{\mathrm{2}{cos}\left(\frac{\pi{x}}{\mathrm{3}}\right)−\mathrm{1}}{\mathrm{1}−{x}^{\mathrm{2}} }\:=\frac{\mathrm{1}−\mathrm{2}{cos}\left(\frac{\pi{x}}{\mathrm{3}}\right)}{{x}^{\mathrm{2}} −\mathrm{1}} \\ $$$${changement}\:{x}−\mathrm{1}={t}\:{give}\:{f}\left({x}\right)={g}\left({t}\right)=\frac{\mathrm{1}−\mathrm{2}{cos}\left(\frac{\pi}{\mathrm{3}}\left(\mathrm{1}+{t}\right)\right)}{{t}\left({t}+\mathrm{2}\right)} \\ $$$$=\frac{\mathrm{1}−\mathrm{2}{cos}\left(\frac{\pi}{\mathrm{3}}+\frac{\pi{t}}{\mathrm{3}}\right)}{{t}\left({t}+\mathrm{2}\right)}\:=\frac{\mathrm{1}−\mathrm{2}\left\{\frac{\mathrm{1}}{\mathrm{2}}{cos}\left(\frac{\pi{t}}{\mathrm{3}}\right)−\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}{sin}\left(\frac{\pi{t}}{\mathrm{3}}\right)\right\}}{{t}\left({t}+\mathrm{2}\right)} \\ $$$$=\frac{\mathrm{1}−{cos}\left(\frac{\pi{t}}{\mathrm{3}}\right)+\sqrt{\mathrm{3}}{sin}\left(\frac{\pi{t}}{\mathrm{3}}\right)}{{t}\left({t}+\mathrm{2}\right)} \\ $$$${x}\rightarrow\mathrm{1}\:\Leftrightarrow{t}\rightarrow\mathrm{0}\:\:{so}\:\:\:\mathrm{1}−{co}\left(\frac{\pi{t}}{\mathrm{3}}\right)\sim\frac{\left(\frac{\pi{t}}{\mathrm{3}}\right)^{\mathrm{2}} }{\mathrm{2}}\:\:{and}\:{sin}\left(\frac{\pi{t}}{\mathrm{3}}\right)\sim\frac{\pi{t}}{\mathrm{3}}\:\Rightarrow \\ $$$${g}\left({t}\right)\sim\:\:\frac{\frac{\pi^{\mathrm{2}} {t}^{\mathrm{2}} }{\mathrm{18}}\:+\sqrt{\mathrm{3}}×\frac{\pi{t}}{\mathrm{3}}}{{t}\left({t}+\mathrm{2}\right)}\:\sim\:\:\frac{\frac{\pi^{\mathrm{2}} {t}}{\mathrm{18}}+\frac{\pi\sqrt{\mathrm{3}}}{\mathrm{3}}}{{t}+\mathrm{2}}\:\rightarrow\frac{\pi\sqrt{\mathrm{3}}}{\mathrm{6}}\:\Rightarrow \\ $$$${lim}_{{x}\rightarrow\mathrm{1}} {f}\left({x}\right)=\frac{\pi\sqrt{\mathrm{3}}}{\mathrm{6}} \\ $$
Commented by kaivan.ahmadi last updated on 09/Oct/19
Commented by Omer Alattas last updated on 09/Oct/19
thanks
$${thanks}\: \\ $$
Commented by Omer Alattas last updated on 09/Oct/19
I dont understsnd the last stap can you   explan the last stap
$${I}\:{dont}\:{understsnd}\:{the}\:{last}\:{stap}\:{can}\:{you}\: \\ $$$${explan}\:{the}\:{last}\:{stap} \\ $$
Commented by Omer Alattas last updated on 10/Oct/19
I dont know what is this  1−cosu∼u^2 /2      can you till me how you get this?and whats mean this ∼
$${I}\:{dont}\:{know}\:{what}\:{is}\:{this}\:\:\mathrm{1}−{cosu}\sim{u}^{\mathrm{2}} /\mathrm{2}\:\:\:\: \\ $$$${can}\:{you}\:{till}\:{me}\:{how}\:{you}\:{get}\:{this}?{and}\:{whats}\:{mean}\:{this}\:\sim \\ $$
Commented by mathmax by abdo last updated on 10/Oct/19
its a formula  1−cosu =2sin^2 ((x/2))  for x∈V(0)  sin((x/2))∼(x/2) ⇒sin^2 ((x/2))∼(x^2 /4) ⇒2sin^2 ((x/2))∼(x^2 /2)   ⇒1−cos u ∼  (x^2 /2)  for x∈V(0)
$${its}\:{a}\:{formula}\:\:\mathrm{1}−{cosu}\:=\mathrm{2}{sin}^{\mathrm{2}} \left(\frac{{x}}{\mathrm{2}}\right)\:\:{for}\:{x}\in{V}\left(\mathrm{0}\right) \\ $$$${sin}\left(\frac{{x}}{\mathrm{2}}\right)\sim\frac{{x}}{\mathrm{2}}\:\Rightarrow{sin}^{\mathrm{2}} \left(\frac{{x}}{\mathrm{2}}\right)\sim\frac{{x}^{\mathrm{2}} }{\mathrm{4}}\:\Rightarrow\mathrm{2}{sin}^{\mathrm{2}} \left(\frac{{x}}{\mathrm{2}}\right)\sim\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\: \\ $$$$\Rightarrow\mathrm{1}−{cos}\:{u}\:\sim\:\:\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\:\:{for}\:{x}\in{V}\left(\mathrm{0}\right) \\ $$
Commented by mathmax by abdo last updated on 11/Oct/19
∼ is the symbol of equivalence..
$$\sim\:{is}\:{the}\:{symbol}\:{of}\:{equivalence}.. \\ $$
Commented by Omer Alattas last updated on 11/Oct/19
thank you vary much
$${thank}\:{you}\:{vary}\:{much}\: \\ $$$$ \\ $$
Commented by Omer Alattas last updated on 11/Oct/19
this formula for x∈0 only right
$${this}\:{formula}\:{for}\:{x}\in\mathrm{0}\:{only}\:{right}\: \\ $$
Commented by mathmax by abdo last updated on 11/Oct/19
yes.
$${yes}. \\ $$
Answered by Henri Boucatchou last updated on 09/Oct/19
lim_(x→1) ((1−4sin^2 ((𝛑/6)x))/(1−x^2 )) = lim_(x→1) (((4sin^2 ((𝛑/6)1)−4sin^2 ((𝛑/6)x))/(1−x))/((1−x^2 )/(1−x))) = ((4sin^2 ((𝛑/6)x)]′_((x=1)) )/(x^2 ]′_((x=1)) )) = ((4×2(𝛑/6)sin((𝛑/6)x)cos((𝛑/6)x)]_((x=1)) )/2)  =((√3)/6)
$$\underset{\boldsymbol{{x}}\rightarrow\mathrm{1}} {\boldsymbol{{lim}}}\frac{\mathrm{1}−\mathrm{4}\boldsymbol{{sin}}^{\mathrm{2}} \left(\frac{\boldsymbol{\pi}}{\mathrm{6}}\boldsymbol{{x}}\right)}{\mathrm{1}−\boldsymbol{{x}}^{\mathrm{2}} }\:=\:\underset{\boldsymbol{{x}}\rightarrow\mathrm{1}} {\boldsymbol{{lim}}}\frac{\frac{\mathrm{4}\boldsymbol{{sin}}^{\mathrm{2}} \left(\frac{\boldsymbol{\pi}}{\mathrm{6}}\mathrm{1}\right)−\mathrm{4}\boldsymbol{{sin}}^{\mathrm{2}} \left(\frac{\boldsymbol{\pi}}{\mathrm{6}}\boldsymbol{{x}}\right)}{\mathrm{1}−\boldsymbol{{x}}}}{\frac{\mathrm{1}−\boldsymbol{{x}}^{\mathrm{2}} }{\mathrm{1}−\boldsymbol{{x}}}}\:=\:\frac{\left.\mathrm{4}\boldsymbol{{sin}}^{\mathrm{2}} \left(\frac{\boldsymbol{\pi}}{\mathrm{6}}\boldsymbol{{x}}\right)\right]'_{\left(\boldsymbol{{x}}=\mathrm{1}\right)} }{\left.\boldsymbol{{x}}^{\mathrm{2}} \right]'_{\left(\boldsymbol{{x}}=\mathrm{1}\right)} }\:=\:\frac{\left.\mathrm{4}×\mathrm{2}\frac{\boldsymbol{\pi}}{\mathrm{6}}\boldsymbol{{sin}}\left(\frac{\boldsymbol{\pi}}{\mathrm{6}}\boldsymbol{{x}}\right)\boldsymbol{{cos}}\left(\frac{\boldsymbol{\pi}}{\mathrm{6}}\boldsymbol{{x}}\right)\right]_{\left(\boldsymbol{{x}}=\mathrm{1}\right)} }{\mathrm{2}} \\ $$$$=\frac{\sqrt{\mathrm{3}}}{\mathrm{6}} \\ $$
Answered by Henri Boucatchou last updated on 09/Oct/19
Sorry, the  answer  is  (((√3) 𝛑)/6)  insted  of  ((√3)/6)
$$\boldsymbol{{Sorry}},\:\boldsymbol{{the}}\:\:\boldsymbol{{answer}}\:\:\boldsymbol{{is}}\:\:\frac{\sqrt{\mathrm{3}}\:\boldsymbol{\pi}}{\mathrm{6}}\:\:\boldsymbol{{insted}}\:\:\boldsymbol{{of}}\:\:\frac{\sqrt{\mathrm{3}}}{\mathrm{6}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *