Question Number 70887 by naka3546 last updated on 09/Oct/19
Commented by ajfour last updated on 09/Oct/19
Commented by ajfour last updated on 09/Oct/19
$${s}\mathrm{sin}\:\alpha={r}\mathrm{sin}\:\gamma \\ $$$${b}^{\mathrm{2}} =\left({s}\mathrm{sin}\:\alpha+{r}\mathrm{cos}\:\delta\right)^{\mathrm{2}} +\left({s}\mathrm{cos}\:\alpha−{r}\mathrm{sin}\:\delta\right)^{\mathrm{2}} \\ $$$${r}\mathrm{sin}\:\delta={a}\mathrm{sin}\:\beta \\ $$$${b}^{\mathrm{2}} =\left({r}\mathrm{sin}\:\delta+{a}\mathrm{sin}\:\beta\right)^{\mathrm{2}} +\left({a}\mathrm{cos}\:\beta−{r}\mathrm{cos}\:\delta\right)^{\mathrm{2}} \\ $$$$\delta+\gamma=\frac{\pi}{\mathrm{2}} \\ $$$$\frac{{s}\mathrm{cos}\:\alpha−{r}\mathrm{sin}\:\delta}{{s}\mathrm{sin}\:\alpha+{r}\mathrm{cos}\:\delta}=\frac{{r}\mathrm{sin}\:\delta+{a}\mathrm{sin}\:\beta}{{a}\mathrm{cos}\:\beta−{r}\mathrm{cos}\:\delta} \\ $$$$……… \\ $$