Question Number 7101 by Tawakalitu. last updated on 10/Aug/16

Commented by Tawakalitu. last updated on 10/Aug/16

Answered by Yozzii last updated on 10/Aug/16
![u(x)=((Σ_(n=1) ^x n^2 (x−n−1))/(Σ_(n=1) ^x n^3 )) (x∈N) [Σ_(n=1) ^x n^3 =((x^2 (x+1)^2 )/4), Σ_(n=1) ^x n^2 =((x(x+1)(2x+1))/6)] u(x)=((Σ_(n=1) ^x {n^2 (x−1)−n^3 })/(x^2 (x+1)^2 /4)) u(x)=(((x−1)((x(x+1)(2x+1))/6)−((x^2 (x+1)^2 )/4))/(x^2 (x+1)^2 /4)) u(x)=((4(x−1)(2x+1))/(6x(x+1)))−1 u(x)=((2(2x^2 −x−1))/(3x^2 +3x))−1 u(x)=((4−2x^(−1) −2x^(−2) )/(3+3x^(−1) ))−1 lim_(x→∞) u(x)=(1/3)??](https://www.tinkutara.com/question/Q7114.png)
Commented by Tawakalitu. last updated on 10/Aug/16

Commented by Tawakalitu. last updated on 10/Aug/16

Commented by Tawakalitu. last updated on 10/Aug/16

Commented by Tawakalitu. last updated on 11/Aug/16
