Question Number 71034 by ajfour last updated on 11/Oct/19
Commented by ajfour last updated on 11/Oct/19
$${take}\:{R}=\mathrm{12},\:{a}=\mathrm{5},\:{b}=\mathrm{2},\:{c}=\mathrm{3} \\ $$$${Find}\:{minimum}\:{of}\:{x}. \\ $$
Commented by ajfour last updated on 11/Oct/19
Commented by ajfour last updated on 11/Oct/19
$${please}\:{solve}..\:\:\left(\underset{\smile} {\overset{\frown} {\bigstar_{\underset{\smile} {\vee}} \bullet}}\right)_{\backslash_{\wedge} } \\ $$
Commented by mr W last updated on 12/Oct/19
$${A}\left(\mathrm{0},−\left({R}−{a}\right)\right) \\ $$$${B}\left(\left({R}−{b}\right)\mathrm{cos}\:\alpha,\left({R}−{b}\right)\mathrm{sin}\:\alpha\right) \\ $$$${C}\left(\left({R}−{c}\right)\mathrm{cos}\:\beta,\left({R}−{c}\right)\mathrm{sin}\:\beta\right) \\ $$$${X}\left({p},{q}\right)\:{with}\:{radius}\:{r} \\ $$$$\left({p}−\mathrm{0}\right)^{\mathrm{2}} +\left[{q}+\left({R}−{a}\right)\right]^{\mathrm{2}} =\left({r}+{a}\right)^{\mathrm{2}} \:\:\:…\left({i}\right) \\ $$$$\left[{p}−\left({R}−{b}\right)\mathrm{cos}\:\alpha\right]^{\mathrm{2}} +\left[{q}−\left({R}−{b}\right)\mathrm{sin}\:\alpha\right]^{\mathrm{2}} =\left({r}+{b}\right)^{\mathrm{2}} \:\:\:…\left({ii}\right) \\ $$$$\left[{p}−\left({R}−{c}\right)\mathrm{cos}\:\beta\right]^{\mathrm{2}} +\left[{q}−\left({R}−{c}\right)\mathrm{sin}\:\beta\right]^{\mathrm{2}} =\left({r}+{c}\right)^{\mathrm{2}} \:\:\:…\left({iii}\right) \\ $$$$\left({i}\right)−\left({ii}\right): \\ $$$$\left({R}−{b}\right)\mathrm{cos}\:\alpha\left[\mathrm{2}{p}−\left({R}−{b}\right)\mathrm{cos}\:\alpha\right]+\left[\left({R}−{a}\right)+\left({R}−{b}\right)\mathrm{sin}\:\alpha\right]\left[\mathrm{2}{q}+\left({R}−{a}\right)−\left({R}−{b}\right)\mathrm{sin}\:\alpha\right]=\left({a}−{b}\right)\left(\mathrm{2}{r}+{a}+{b}\right) \\ $$$$\left({R}−{c}\right)\mathrm{cos}\:\beta\left[\mathrm{2}{p}−\left({R}−{c}\right)\mathrm{cos}\:\beta\right]+\left[\left({R}−{a}\right)+\left({R}−{c}\right)\mathrm{sin}\:\beta\right]\left[\mathrm{2}{q}+\left({R}−{a}\right)−\left({R}−{c}\right)\mathrm{sin}\:\beta\right]=\left({a}−{c}\right)\left(\mathrm{2}{r}+{a}+{c}\right) \\ $$$${with}\:{A}={R}−{a},\:{B}={R}−{b},\:{C}={R}−{c},\:{P}=\mathrm{2}{p},\:\:{Q}=\mathrm{2}{q} \\ $$$${B}\mathrm{cos}\:\alpha\left[{P}−{B}\mathrm{cos}\:\alpha\right]+\left[{A}+{B}\mathrm{sin}\:\alpha\right]\left[{Q}+{A}−{B}\mathrm{sin}\:\alpha\right]=\left({a}−{b}\right)\left(\mathrm{2}{r}+{a}+{b}\right) \\ $$$${C}\mathrm{cos}\:\beta\left[{P}−{C}\mathrm{cos}\:\beta\right]+\left[{A}+{C}\mathrm{sin}\:\beta\right]\left[{Q}+{A}−{C}\mathrm{sin}\:\beta\right]=\left({a}−{c}\right)\left(\mathrm{2}{r}+{a}+{c}\right) \\ $$$$ \\ $$$${B}\mathrm{cos}\:\alpha{P}+\left({A}+{B}\mathrm{sin}\:\alpha\right){Q}=\mathrm{2}\left({r}+{R}\right)\left({B}−{A}\right)\:\:\:…\left({I}\right) \\ $$$${C}\mathrm{cos}\:\beta{P}+\left({A}+{C}\mathrm{sin}\:\beta\right){Q}=\mathrm{2}\left({r}+{R}\right)\left({C}−{A}\right)\:\:\:…\left({II}\right) \\ $$$$ \\ $$$$\left[{A}\left({B}\:\mathrm{cos}\:\alpha−{C}\:\mathrm{cos}\:\beta\right)+{BC}\:\mathrm{sin}\:\left(\beta−\alpha\right)\right]{Q}=\mathrm{2}\left({r}+{R}\right)\left[{BC}\left(\mathrm{cos}\:{a}−\mathrm{cos}\:\beta\right)−{A}\left({B}\:\mathrm{cos}\:\alpha−{C}\:\mathrm{cos}\:\beta\right)\right] \\ $$$$\Rightarrow{Q}=\frac{\mathrm{2}\left({r}+{R}\right)\left[{BC}\left(\mathrm{cos}\:{a}−\mathrm{cos}\:\beta\right)−{A}\left({B}\:\mathrm{cos}\:\alpha−{C}\:\mathrm{cos}\:\beta\right)\right]}{{A}\left({B}\:\mathrm{cos}\:\alpha−{C}\:\mathrm{cos}\:\beta\right)+{BC}\:\mathrm{sin}\:\left(\beta−\alpha\right)} \\ $$$$\Rightarrow{q}=\left({r}+{R}\right)\frac{\left[{BC}\left(\mathrm{cos}\:{a}−\mathrm{cos}\:\beta\right)−{A}\left({B}\:\mathrm{cos}\:\alpha−{C}\:\mathrm{cos}\:\beta\right)\right]}{{A}\left({B}\:\mathrm{cos}\:\alpha−{C}\:\mathrm{cos}\:\beta\right)+{BC}\:\mathrm{sin}\:\left(\beta−\alpha\right)} \\ $$$$\Rightarrow{q}=\left({r}+{R}\right){V} \\ $$$$\left[{A}\left({B}\:\mathrm{cos}\:\alpha−{C}\:\mathrm{cos}\:\beta\right)+{BC}\:\mathrm{sin}\:\left(\beta−\alpha\right)\right]{P}=\mathrm{2}\left({r}+{R}\right)\left[{A}\left({B}−{C}\right)+{BC}\left(\mathrm{sin}\:\beta−\mathrm{sin}\:\alpha\right)−{A}\left({C}\mathrm{sin}\:\beta−{B}\mathrm{sin}\:\alpha\right)\right] \\ $$$$\Rightarrow{P}=\frac{\mathrm{2}\left({r}+{R}\right)\left[{A}\left({B}−{C}\right)+{BC}\left(\mathrm{sin}\:\beta−\mathrm{sin}\:\alpha\right)−{A}\left({C}\mathrm{sin}\:\beta−{B}\mathrm{sin}\:\alpha\right)\right]}{{A}\left({B}\:\mathrm{cos}\:\alpha−{C}\:\mathrm{cos}\:\beta\right)+{BC}\:\mathrm{sin}\:\left(\beta−\alpha\right)}\: \\ $$$$\Rightarrow{p}=\left({r}+{R}\right)\frac{\left[{A}\left({B}−{C}\right)+{BC}\left(\mathrm{sin}\:\beta−\mathrm{sin}\:\alpha\right)−{A}\left({C}\mathrm{sin}\:\beta−{B}\mathrm{sin}\:\alpha\right)\right]}{{A}\left({B}\:\mathrm{cos}\:\alpha−{C}\:\mathrm{cos}\:\beta\right)+{BC}\:\mathrm{sin}\:\left(\beta−\alpha\right)}\: \\ $$$$\Rightarrow{p}=\left({r}+{R}\right){U}\: \\ $$$${from}\:\left({i}\right): \\ $$$${U}^{\mathrm{2}} \left({r}+{R}\right)^{\mathrm{2}} +\left[{V}\left({r}+{R}\right)+{A}\right]^{\mathrm{2}} =\left({r}+{R}−{A}\right)^{\mathrm{2}} \:\:\: \\ $$$${let}\:\lambda={r}+{R} \\ $$$$\Rightarrow{U}^{\mathrm{2}} \lambda^{\mathrm{2}} +\left({V}\lambda+{A}\right)^{\mathrm{2}} =\left(\lambda−{A}\right)^{\mathrm{2}} \:\:\: \\ $$$$\Rightarrow\left(\mathrm{1}−{U}^{\mathrm{2}} −{V}^{\mathrm{2}} \right)\lambda=\mathrm{2}{A}\left({V}+\mathrm{1}\right)\:\: \\ $$$$\Rightarrow\lambda={r}+{R}=\frac{\mathrm{2}{A}\left({V}+\mathrm{1}\right)}{\mathrm{1}−{U}^{\mathrm{2}} −{V}^{\mathrm{2}} } \\ $$$$\Rightarrow{r}=\frac{\mathrm{2}{A}\left({V}+\mathrm{1}\right)}{\mathrm{1}−{U}^{\mathrm{2}} −{V}^{\mathrm{2}} }−{R}={f}\left(\alpha,\beta\right) \\ $$$${with} \\ $$$${A}={R}−{a} \\ $$$${B}={R}−{b} \\ $$$${C}={R}−{c} \\ $$$${U}=\frac{{A}\left({B}−{C}\right)+{BC}\left(\mathrm{sin}\:\beta−\mathrm{sin}\:\alpha\right)−{A}\left({C}\mathrm{sin}\:\beta−{B}\mathrm{sin}\:\alpha\right)}{{A}\left({B}\:\mathrm{cos}\:\alpha−{C}\:\mathrm{cos}\:\beta\right)+{BC}\:\mathrm{sin}\:\left(\beta−\alpha\right)}\: \\ $$$${V}=\frac{{BC}\left(\mathrm{cos}\:{a}−\mathrm{cos}\:\beta\right)−{A}\left({B}\:\mathrm{cos}\:\alpha−{C}\:\mathrm{cos}\:\beta\right)}{{A}\left({B}\:\mathrm{cos}\:\alpha−{C}\:\mathrm{cos}\:\beta\right)+{BC}\:\mathrm{sin}\:\left(\beta−\alpha\right)} \\ $$$$\frac{\partial{r}}{\partial\alpha}=\mathrm{0}\:\Rightarrow\:{eqn}.\:\mathrm{1}\:{with}\:\alpha,\beta \\ $$$$\frac{\partial{r}}{\partial\beta}=\mathrm{0}\:\Rightarrow\:{eqn}.\:\mathrm{2}\:{with}\:\alpha,\beta \\ $$$$… \\ $$
Commented by peter frank last updated on 11/Oct/19
$${please}\:{sir}\:{help}\: \\ $$$${Qn}\:\mathrm{69230},\mathrm{70562} \\ $$
Commented by ajfour last updated on 12/Oct/19
$${thank}\:{you}\:{sir},\:{let}\:{me}\:{try}\:{a}\:{bit} \\ $$$${off}\:{route}.. \\ $$