Question Number 71147 by mr W last updated on 12/Oct/19
Commented by mr W last updated on 12/Oct/19
$${find}\:{f}\left(\mathrm{5}\right)=? \\ $$
Answered by MJS last updated on 12/Oct/19
$$\mathrm{let}\:\:{f}\left({f}\left({f}\underset{{k}\:{times}} {…}\right)\right)\:={f}_{{k}} \\ $$$${f}_{\mathrm{1}} \left(\mathrm{5}\right)={f}_{\mathrm{200}} \left(\mathrm{1000}\right)={f}_{\mathrm{199}} \left(\mathrm{997}\right)={f}_{\mathrm{200}} \left(\mathrm{1002}\right)= \\ $$$$={f}_{\mathrm{199}} \left(\mathrm{999}\right)={f}_{\mathrm{200}} \left(\mathrm{1004}\right)={f}_{\mathrm{199}} \left(\mathrm{1001}\right)={f}_{\mathrm{198}} \left(\mathrm{998}\right)= \\ $$$$={f}_{\mathrm{199}} \left(\mathrm{1003}\right)={f}_{\mathrm{198}} \left(\mathrm{1000}\right)=…={f}_{\mathrm{196}} \left(\mathrm{1000}\right)=…= \\ $$$$={f}_{\mathrm{2}} \left(\mathrm{1000}\right)={f}_{\mathrm{1}} \left(\mathrm{997}\right)={f}_{\mathrm{2}} \left(\mathrm{1002}\right)={f}_{\mathrm{1}} \left(\mathrm{999}\right)= \\ $$$$={f}_{\mathrm{2}} \left(\mathrm{1004}\right)={f}_{\mathrm{1}} \left(\mathrm{1001}\right)=\mathrm{998} \\ $$
Commented by mr W last updated on 12/Oct/19
$${thanks}! \\ $$
Commented by mr W last updated on 12/Oct/19
$${it}\:{seems}\:{that}\:{f}\left(\mathrm{2}{k}\right)=\mathrm{997}\:{and}\:{f}\left(\mathrm{2}{k}+\mathrm{1}\right)=\mathrm{998}, \\ $$$${right}? \\ $$
Answered by mind is power last updated on 12/Oct/19
$$\mathrm{f}\left(\mathrm{5}\right)=\mathrm{ff}\left(\mathrm{10}\right),\mathrm{f}\left(\mathrm{10}\right)=\mathrm{fff}\left(\mathrm{15}\right) \\ $$$$\Rightarrow\mathrm{f}\left(\mathrm{5}\right)=\mathrm{f}……..\mathrm{f}\left(\mathrm{1000}\right)\:\:\:,\mathrm{1000}=\mathrm{5}×\mathrm{200} \\ $$$$\mathrm{f}\left(\mathrm{5}\right)=\left(\mathrm{f}^{\left(\mathrm{200}\right)} \left(\mathrm{1000}\right)\right)= \\ $$$$\mathrm{f}\left(\mathrm{1000}\right)=\mathrm{997} \\ $$$$\mathrm{ff}\left(\mathrm{1000}\right)=\mathrm{f}\left(\mathrm{997}\right)=\mathrm{ff}\left(\mathrm{1002}\right)=\mathrm{f}\left(\mathrm{999}\right)=\mathrm{ff}\left(\mathrm{1004}\right)=\mathrm{f}\left(\mathrm{1001}\right)=\mathrm{998} \\ $$$$\mathrm{fff}\left(\mathrm{1000}\right)=\mathrm{f}\left(\mathrm{998}\right)=\mathrm{ff}\left(\mathrm{1003}\right)=\mathrm{f}\left(\mathrm{1000}\right)=\mathrm{997} \\ $$$$\Rightarrow\mathrm{f}^{\mathrm{2n}+\mathrm{1}} \left(\mathrm{1000}\right)=\mathrm{f}\left(\mathrm{1000}\right)=\mathrm{997} \\ $$$$\mathrm{f}^{\mathrm{2n}+\mathrm{2}} =\mathrm{f}\left(\mathrm{f}^{\mathrm{2n}+\mathrm{1}} \left(\mathrm{1000}\right)\right)=\mathrm{f}\left(\mathrm{f}\left(\mathrm{1000}\right)\right)=\mathrm{f}^{\mathrm{2}} \left(\mathrm{1000}\right)=\mathrm{998} \\ $$$$ \\ $$$$\mathrm{by}\:\mathrm{induction}\:\mathrm{f}^{\mathrm{n}} \left(\mathrm{1000}\right)=\begin{cases}{\mathrm{998}\:\mathrm{if}\:\mathrm{n}=\mathrm{2k}\:,\mathrm{k}\geqslant\mathrm{1}}\\{\mathrm{997}\:\mathrm{if}\:\mathrm{n}=\mathrm{2k}+\mathrm{1}\:,\mathrm{k}\geqslant\mathrm{0}}\end{cases} \\ $$$$\mathrm{f}\left(\mathrm{5}\right)=\mathrm{f}^{\mathrm{200}} \left(\mathrm{1000}\right)=\mathrm{998} \\ $$$$ \\ $$$$ \\ $$
Commented by mr W last updated on 12/Oct/19
$${thanks}! \\ $$
Commented by mind is power last updated on 12/Oct/19
$$\mathrm{y}'\mathrm{re}\:\mathrm{welcom} \\ $$