Menu Close

Question-7127




Question Number 7127 by Tawakalitu. last updated on 11/Aug/16
Commented by Yozzii last updated on 11/Aug/16
Let u=x(√(1+(x+1)+(√(1+(x+2)+(√(1+(x+3)+(√(1+....))))))))  ⇒(u/x)=(√(1+(x+1)+(√(1+(x+2)+(√(1+(x+3)+(√(1+....))))))))  let n=x+1⇒x=n−1.  ∴(u/(n−1))=(√(1+n+(√(1+(n+1)+(√(1+(n+2)+(√(1+(n+3)+(√(1+.....))))))))))  (u^2 /((n−1)^2 ))−n−1=(√(1+(n+1)+(√(1+(n+2)+(√(1+(n+3)+(√(1+....))))))))  But for any x≠0, (u/x) has the form (√(1+(x+1)+(√(1+(x+2)+(√(1+(x+3)+(√(1+....))))))))  Therefore, if (√(1+(x+1)+(√(1+(x+2)+(√(1+(x+3)+(√(1+....)))))))) converges to (u/x)  ⇒(√(1+(n+1)+(√(1+(n+2)+(√(1+(n+3)+(√(1+.....)))))))) converges to (u/n).  (u^2 /((n−1)^2 ))−n−1=(u/n)  nu^2 −n(n+1)(n−1)^2 =u(n−1)^2   nu^2 −(n−1)^2 u−n(n+1)(n−1)^2 =0  ∴ u=(((n−1)^2 ±(√((n−1)^4 +4×n×n(n+1)(n−1)^2 )))/(2n))  u=(((n−1)^2 ±(n−1)^2 (√((n−1)^2 +4n^2 (n+1))))/(2n))  n=x+1  ∴u=x[((1±(√(x^2 +4(x+1)^2 (x+2))))/(2(x+1)))]  u=x[((1±(√(x^2 +4(x^2 +2x+1)(x+2))))/(2(x+1)))]  u=x[((1±(√(x^2 +4(x^3 +2x^2 +2x^2 +4x+x+2))))/(2(x+1)))]  u=x[((1±(√(4x^3 +17x^2 +20x+8)))/(2(x+1)))]    Let r(x)=4x^3 +17x^2 +20x+8  ∴ if r′(x)=0⇒12x^2 + 34x+20=0  6x^2 +17x+10=0  ∴x=((−17±(√(289−4×6×10)))/(12))=((−17±7)/(12))  x=((−24)/(12)),((−10)/(12)) or x=−2,((−5)/6)  r(−2)=4×(−8)+17×4−20×2+8  r(−2)=−32+68−40+8=4>1>0  If r(x)≥1⇒4x^3 +17x^2 +20x+7≥0  4x^2 (x+1)+20x(x+1)−7(x^2 −1)≥0  (x+1)(4x^2 +20x−7(x−1))≥0  (x+1)(4x^2 +13x+7)≥0  x=((−13±(√(169−4×4×7)))/8)  x=((−13±(√(57)))/8)  (x+1)(x+((13+(√(57)))/8))(x+((13−(√(57)))/8))≥0  −−−−−−−−(−1)++++++++++  −−−−r_1 +++++++++++++++  −−−−−−−−−−−−−−r_2 +++++  r_1 ≤x≤−1, x≥r_2   If x=r_1  or r_2  (not −1), u=x[((1±1)/(2(x+1)))]=0 or (x/(x+1))  But, u=0 iff x=0 and x≠0 ∴ u=(x/(x+1))  if x= r_(1 ) or r_2 .  If r_1 <x<−1 or x>r_2 , 1−(√(4x^3 +17x^2 +20x+8))<1−1=0  But, (√(1+(x+1)+(√(1+(x+2)+(√(1+(x+3)+(√(1+...))))))))>0  ∴ u=((x(1−(√(4x^3 +17x^2 +20x+8))))/(2(x+1))) for ((−13−(√(57)))/8)=r_1 <x<−1  and u=((x(1+(√(4x^3 +17x^2 +20x+8))))/(2(x+1))) for x>r_2 =((−13+(√(57)))/8)
Letu=x1+(x+1)+1+(x+2)+1+(x+3)+1+.ux=1+(x+1)+1+(x+2)+1+(x+3)+1+.letn=x+1x=n1.un1=1+n+1+(n+1)+1+(n+2)+1+(n+3)+1+..u2(n1)2n1=1+(n+1)+1+(n+2)+1+(n+3)+1+.Butforanyx0,uxhastheform1+(x+1)+1+(x+2)+1+(x+3)+1+.Therefore,if1+(x+1)+1+(x+2)+1+(x+3)+1+.convergestoux1+(n+1)+1+(n+2)+1+(n+3)+1+..convergestoun.u2(n1)2n1=unnu2n(n+1)(n1)2=u(n1)2nu2(n1)2un(n+1)(n1)2=0u=(n1)2±(n1)4+4×n×n(n+1)(n1)22nu=(n1)2±(n1)2(n1)2+4n2(n+1)2nn=x+1u=x[1±x2+4(x+1)2(x+2)2(x+1)]u=x[1±x2+4(x2+2x+1)(x+2)2(x+1)]u=x[1±x2+4(x3+2x2+2x2+4x+x+2)2(x+1)]u=x[1±4x3+17x2+20x+82(x+1)]Letr(x)=4x3+17x2+20x+8ifr(x)=012x2+34x+20=06x2+17x+10=0x=17±2894×6×1012=17±712x=2412,1012orx=2,56r(2)=4×(8)+17×420×2+8r(2)=32+6840+8=4>1>0Ifr(x)14x3+17x2+20x+704x2(x+1)+20x(x+1)7(x21)0(x+1)(4x2+20x7(x1))0(x+1)(4x2+13x+7)0x=13±1694×4×78x=13±578(x+1)(x+13+578)(x+13578)0(1)++++++++++r1+++++++++++++++r2+++++r1x1,xr2Ifx=r1orr2(not1),u=x[1±12(x+1)]=0orxx+1But,u=0iffx=0andx0u=xx+1ifx=r1orr2.Ifr1<x<1orx>r2,14x3+17x2+20x+8<11=0But,1+(x+1)+1+(x+2)+1+(x+3)+1+>0u=x(14x3+17x2+20x+8)2(x+1)for13578=r1<x<1andu=x(1+4x3+17x2+20x+8)2(x+1)forx>r2=13+578
Commented by Tawakalitu. last updated on 11/Aug/16
Great job ..... Thank you very much sir. i appreciate your effort
Greatjob..Thankyouverymuchsir.iappreciateyoureffort

Leave a Reply

Your email address will not be published. Required fields are marked *