Question-7127 Tinku Tara June 3, 2023 Algebra 0 Comments FacebookTweetPin Question Number 7127 by Tawakalitu. last updated on 11/Aug/16 Commented by Yozzii last updated on 11/Aug/16 Letu=x1+(x+1)+1+(x+2)+1+(x+3)+1+….⇒ux=1+(x+1)+1+(x+2)+1+(x+3)+1+….letn=x+1⇒x=n−1.∴un−1=1+n+1+(n+1)+1+(n+2)+1+(n+3)+1+…..u2(n−1)2−n−1=1+(n+1)+1+(n+2)+1+(n+3)+1+….Butforanyx≠0,uxhastheform1+(x+1)+1+(x+2)+1+(x+3)+1+….Therefore,if1+(x+1)+1+(x+2)+1+(x+3)+1+….convergestoux⇒1+(n+1)+1+(n+2)+1+(n+3)+1+…..convergestoun.u2(n−1)2−n−1=unnu2−n(n+1)(n−1)2=u(n−1)2nu2−(n−1)2u−n(n+1)(n−1)2=0∴u=(n−1)2±(n−1)4+4×n×n(n+1)(n−1)22nu=(n−1)2±(n−1)2(n−1)2+4n2(n+1)2nn=x+1∴u=x[1±x2+4(x+1)2(x+2)2(x+1)]u=x[1±x2+4(x2+2x+1)(x+2)2(x+1)]u=x[1±x2+4(x3+2x2+2x2+4x+x+2)2(x+1)]u=x[1±4x3+17x2+20x+82(x+1)]Letr(x)=4x3+17x2+20x+8∴ifr′(x)=0⇒12x2+34x+20=06x2+17x+10=0∴x=−17±289−4×6×1012=−17±712x=−2412,−1012orx=−2,−56r(−2)=4×(−8)+17×4−20×2+8r(−2)=−32+68−40+8=4>1>0Ifr(x)⩾1⇒4x3+17x2+20x+7⩾04x2(x+1)+20x(x+1)−7(x2−1)⩾0(x+1)(4x2+20x−7(x−1))⩾0(x+1)(4x2+13x+7)⩾0x=−13±169−4×4×78x=−13±578(x+1)(x+13+578)(x+13−578)⩾0−−−−−−−−(−1)++++++++++−−−−r1+++++++++++++++−−−−−−−−−−−−−−r2+++++r1⩽x⩽−1,x⩾r2Ifx=r1orr2(not−1),u=x[1±12(x+1)]=0orxx+1But,u=0iffx=0andx≠0∴u=xx+1ifx=r1orr2.Ifr1<x<−1orx>r2,1−4x3+17x2+20x+8<1−1=0But,1+(x+1)+1+(x+2)+1+(x+3)+1+…>0∴u=x(1−4x3+17x2+20x+8)2(x+1)for−13−578=r1<x<−1andu=x(1+4x3+17x2+20x+8)2(x+1)forx>r2=−13+578 Commented by Tawakalitu. last updated on 11/Aug/16 Greatjob…..Thankyouverymuchsir.iappreciateyoureffort Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-7126Next Next post: Three-circles-each-radius-1-touch-one-another-externally-and-they-lie-between-two-parallel-line-The-minimum-possible-distance-between-the-lines-is- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.