Menu Close

Question-7147




Question Number 7147 by Tawakalitu. last updated on 13/Aug/16
Commented by Yozzii last updated on 13/Aug/16
u(n)=(−1+2)+(−3+4)+(−5+6)+...+(−(2n−1)+2n)  u(n)=Σ_(i=1) ^n (−2n+1+2n)=n  u(((10^9 )/2))=((10^9 )/2)  10^9 +Σ_(k=0) ^(10^9 ) k(−1)^k =10^9 +Σ_(k=1) ^(10^9 ) k(−1)^k =((3×10^9 )/2)
$${u}\left({n}\right)=\left(−\mathrm{1}+\mathrm{2}\right)+\left(−\mathrm{3}+\mathrm{4}\right)+\left(−\mathrm{5}+\mathrm{6}\right)+…+\left(−\left(\mathrm{2}{n}−\mathrm{1}\right)+\mathrm{2}{n}\right) \\ $$$${u}\left({n}\right)=\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\left(−\mathrm{2}{n}+\mathrm{1}+\mathrm{2}{n}\right)={n} \\ $$$${u}\left(\frac{\mathrm{10}^{\mathrm{9}} }{\mathrm{2}}\right)=\frac{\mathrm{10}^{\mathrm{9}} }{\mathrm{2}} \\ $$$$\mathrm{10}^{\mathrm{9}} +\underset{{k}=\mathrm{0}} {\overset{\mathrm{10}^{\mathrm{9}} } {\sum}}{k}\left(−\mathrm{1}\right)^{{k}} =\mathrm{10}^{\mathrm{9}} +\underset{{k}=\mathrm{1}} {\overset{\mathrm{10}^{\mathrm{9}} } {\sum}}{k}\left(−\mathrm{1}\right)^{{k}} =\frac{\mathrm{3}×\mathrm{10}^{\mathrm{9}} }{\mathrm{2}} \\ $$$$ \\ $$
Commented by Tawakalitu. last updated on 13/Aug/16
Thanks so much sir. i really appreciate
$${Thanks}\:{so}\:{much}\:{sir}.\:{i}\:{really}\:{appreciate} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *