Question Number 71776 by TawaTawa last updated on 19/Oct/19
Answered by tw000001 last updated on 22/Oct/19
$$\mathrm{Use}\:\mathrm{Harmonic}\:\mathrm{series}\:\mathrm{to}\:\mathrm{solve}. \\ $$$${A}=\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}−\frac{\mathrm{1}}{\mathrm{4}}+…+\frac{\mathrm{1}}{\mathrm{2015}}−\frac{\mathrm{1}}{\mathrm{2016}} \\ $$$$=\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+…+\frac{\mathrm{1}}{\mathrm{2016}}\right)−\mathrm{2}\left(\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{6}}+…+\frac{\mathrm{1}}{\mathrm{2016}}\right) \\ $$$$=\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+…+\frac{\mathrm{1}}{\mathrm{2016}}\right)−\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+…+\frac{\mathrm{1}}{\mathrm{1008}}\right) \\ $$$$={H}_{\mathrm{2016}} −{H}_{\mathrm{1008}} \\ $$$${B}=\frac{\mathrm{2}\left(\frac{\mathrm{1}}{\mathrm{1009}}+\frac{\mathrm{1}}{\mathrm{1010}}+\frac{\mathrm{1}}{\mathrm{1011}}+…+\frac{\mathrm{1}}{\mathrm{2016}}\right)}{\mathrm{3025}} \\ $$$$=\frac{\mathrm{2}\left({H}_{\mathrm{2016}} −{H}_{\mathrm{1008}} \right)}{\mathrm{3025}}=\frac{\mathrm{2}{A}}{\mathrm{3025}} \\ $$$$\therefore\frac{\mathrm{20}{A}}{\mathrm{11}{B}}=\frac{\mathrm{20}×\mathrm{3025}}{\mathrm{11}×\mathrm{2}}=\mathrm{2750} \\ $$
Commented by TawaTawa last updated on 22/Oct/19
$$\mathrm{Thanks}\:\mathrm{for}\:\mathrm{producing}\:\mathrm{more}\:\mathrm{steps},\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$
Commented by TawaTawa last updated on 21/Oct/19
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}.\:\mathrm{Thanks}\:\mathrm{for}\:\mathrm{your}\:\mathrm{time} \\ $$
Commented by TawaTawa last updated on 21/Oct/19
$$\mathrm{Somebody}\:\mathrm{must}\:\mathrm{have}\:\mathrm{mistakenly}\:\mathrm{flag}\:\mathrm{instead}\:\mathrm{of}\:\mathrm{like}. \\ $$$$\mathrm{Thanks}\:\mathrm{for}\:\mathrm{the}\:\mathrm{solution}\:\mathrm{sir}. \\ $$