Menu Close

Question-71993




Question Number 71993 by TawaTawa last updated on 23/Oct/19
Answered by mind is power last updated on 23/Oct/19
let∠ AC^ E=∠ADE=x  ⇒∠ECD=3x−x=2x⇒EC=ED  ECD isocel Triangl  ∠ADC=∠EDC−∠EDA=2x−x=x  △ADE=AD.ED.((sin(x))/2)  △ACE=((AC.CEsin(x))/2)  ((△ADE)/(△ACE))=((AD.DEsin(x))/(AC.CE.sin(x)))=((AD)/(AC))   {≪ED=EC≫}  we have In ADE  ((AD)/(sin(3x)))=((AC)/(sin(x)))  ⇒((AD)/(AC))=((sin(3x))/(sin(x)))=((△ADE)/(△ACE))  lim_(x→0) ((sin(3x))/(sin(x)))=lim_(x→0) ((3.sin(3x))/(3x)).(((sin(x))/x))^(−1)   lim ((sint)/t)=1⇒lim_(x→0)  ((3sin(3x))/(3x)).(((sin(x))/x))^(−1) =3  we can also  use sin(3x)=−4sin^3 (x)+3sin(x)  ⇒((sin(3x))/(sin(x)))=−4sin^2 (x)+3→3
$$\mathrm{let}\angle\:\mathrm{A}\overset{} {\mathrm{C}E}=\angle\mathrm{ADE}=\mathrm{x} \\ $$$$\Rightarrow\angle\mathrm{ECD}=\mathrm{3x}−\mathrm{x}=\mathrm{2x}\Rightarrow\mathrm{EC}=\mathrm{ED}\:\:\mathrm{ECD}\:\mathrm{isocel}\:\mathrm{Triangl} \\ $$$$\angle\mathrm{ADC}=\angle\mathrm{EDC}−\angle\mathrm{EDA}=\mathrm{2x}−\mathrm{x}=\mathrm{x} \\ $$$$\bigtriangleup\mathrm{ADE}=\mathrm{AD}.\mathrm{ED}.\frac{\mathrm{sin}\left(\mathrm{x}\right)}{\mathrm{2}} \\ $$$$\bigtriangleup\mathrm{ACE}=\frac{\mathrm{AC}.\mathrm{CEsin}\left(\mathrm{x}\right)}{\mathrm{2}} \\ $$$$\frac{\bigtriangleup\mathrm{ADE}}{\bigtriangleup\mathrm{ACE}}=\frac{\mathrm{AD}.\mathrm{DEsin}\left(\mathrm{x}\right)}{\mathrm{AC}.\mathrm{CE}.\mathrm{sin}\left(\mathrm{x}\right)}=\frac{\mathrm{AD}}{\mathrm{AC}}\:\:\:\left\{\ll\mathrm{ED}=\mathrm{EC}\gg\right\} \\ $$$$\mathrm{we}\:\mathrm{have}\:\mathrm{In}\:\mathrm{ADE}\:\:\frac{\mathrm{AD}}{\mathrm{sin}\left(\mathrm{3x}\right)}=\frac{\mathrm{AC}}{\mathrm{sin}\left(\mathrm{x}\right)} \\ $$$$\Rightarrow\frac{\mathrm{AD}}{\mathrm{AC}}=\frac{\mathrm{sin}\left(\mathrm{3x}\right)}{\mathrm{sin}\left(\mathrm{x}\right)}=\frac{\bigtriangleup\mathrm{ADE}}{\bigtriangleup\mathrm{ACE}} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{sin}\left(\mathrm{3x}\right)}{\mathrm{sin}\left(\mathrm{x}\right)}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{3}.\mathrm{sin}\left(\mathrm{3x}\right)}{\mathrm{3x}}.\left(\frac{\mathrm{sin}\left(\mathrm{x}\right)}{\mathrm{x}}\right)^{−\mathrm{1}} \\ $$$$\mathrm{lim}\:\frac{\mathrm{sint}}{\mathrm{t}}=\mathrm{1}\Rightarrow\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{3sin}\left(\mathrm{3x}\right)}{\mathrm{3x}}.\left(\frac{\mathrm{sin}\left(\mathrm{x}\right)}{\mathrm{x}}\right)^{−\mathrm{1}} =\mathrm{3} \\ $$$$\mathrm{we}\:\mathrm{can}\:\mathrm{also} \\ $$$$\mathrm{use}\:\mathrm{sin}\left(\mathrm{3x}\right)=−\mathrm{4sin}^{\mathrm{3}} \left(\mathrm{x}\right)+\mathrm{3sin}\left(\mathrm{x}\right) \\ $$$$\Rightarrow\frac{\mathrm{sin}\left(\mathrm{3x}\right)}{\mathrm{sin}\left(\mathrm{x}\right)}=−\mathrm{4sin}^{\mathrm{2}} \left(\mathrm{x}\right)+\mathrm{3}\rightarrow\mathrm{3} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$
Commented by TawaTawa last updated on 23/Oct/19
God bless you sir, thanks for your time
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir},\:\mathrm{thanks}\:\mathrm{for}\:\mathrm{your}\:\mathrm{time} \\ $$
Commented by mind is power last updated on 23/Oct/19
happy this help you sir have a nice day
$$\mathrm{happy}\:\mathrm{this}\:\mathrm{help}\:\mathrm{you}\:\mathrm{sir}\:\mathrm{have}\:\mathrm{a}\:\mathrm{nice}\:\mathrm{day} \\ $$$$ \\ $$
Commented by TawaTawa last updated on 23/Oct/19
Yes sir,  help me look at question  71761
$$\mathrm{Yes}\:\mathrm{sir},\:\:\mathrm{help}\:\mathrm{me}\:\mathrm{look}\:\mathrm{at}\:\mathrm{question}\:\:\mathrm{71761} \\ $$
Commented by mind is power last updated on 24/Oct/19
3002!!=[2003] ?
$$\mathrm{3002}!!=\left[\mathrm{2003}\right]\:? \\ $$$$ \\ $$
Commented by TawaTawa last updated on 24/Oct/19
No sir
$$\mathrm{No}\:\mathrm{sir} \\ $$
Commented by TawaTawa last updated on 24/Oct/19

Leave a Reply

Your email address will not be published. Required fields are marked *