Question Number 72111 by A8;15: last updated on 24/Oct/19
Commented by mathmax by abdo last updated on 24/Oct/19
$${let}\:{I}=\int_{\mathrm{0}} ^{\frac{{e}}{\pi}} \:\frac{{arctan}\left(\frac{\pi{x}}{{e}}\right)}{\pi{x}\:+{e}}{dx}\:{changement}\:\frac{\pi{x}}{{e}}\:={t}\:{give} \\ $$$${I}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{arctant}}{\pi\left(\frac{{et}}{\pi}\right)+{e}}\frac{{e}}{\pi}{dt}\:=\frac{{e}}{\pi}\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{arctan}\left({t}\right)}{{e}\left({t}+\mathrm{1}\right)}{dt}\:=\frac{\mathrm{1}}{\pi}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{arctan}\left({t}\right)}{{t}+\mathrm{1}}{dt} \\ $$$${by}\:{parts}\:{u}^{'} =\frac{\mathrm{1}}{{t}+\mathrm{1}}\:{and}\:{v}={arctan}\left({t}\right)\:\Rightarrow \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{arctan}\left({t}\right)}{{t}+\mathrm{1}}{dt}\:=\left[{ln}\left({t}+\mathrm{1}\right){arctant}\right]_{\mathrm{0}} ^{\mathrm{1}} \:−\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left({t}+\mathrm{1}\right)}{\mathrm{1}+{t}^{\mathrm{2}} }{dt} \\ $$$$=\frac{\pi}{\mathrm{4}}{ln}\left(\mathrm{2}\right)−\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{ln}\left({t}+\mathrm{1}\right)}{\mathrm{1}+{t}^{\mathrm{2}} }{dt}\:{but} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{ln}\left({t}+\mathrm{1}\right)}{\mathrm{1}+{t}^{\mathrm{2}} }{dt}\:=_{{t}={tan}\theta} \:\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\frac{{ln}\left({tan}\theta\:+\mathrm{1}\right)}{\mathrm{1}+{tan}^{\mathrm{2}} \theta}\left(\mathrm{1}+{tan}^{\mathrm{2}} \theta\right){d}\theta \\ $$$$\left.=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:{ln}\left(\frac{{sin}\theta}{{cos}\theta}+\mathrm{1}\right){d}\theta\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {ln}\left({cos}\theta\:+{sin}\theta\right)−{ln}\left({cos}\theta\right)\right\}{d}\theta \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {ln}\left(\sqrt{\mathrm{2}}{cos}\left(\frac{\pi}{\mathrm{4}}−\theta\right)\right)−\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {ln}\left({cos}\theta\right){d}\theta \\ $$$$=_{\frac{\pi}{\mathrm{4}}−\theta={u}} \:\:−\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\left\{\:\left(\frac{\mathrm{1}}{\mathrm{2}}\frac{\pi}{\mathrm{4}}\right){ln}\left(\mathrm{2}\right)+{ln}\left({cosu}\right)\right\}\left(−{du}\right)−\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {ln}\left({cosu}\right){du} \\ $$$$=−\frac{\pi}{\mathrm{8}}{ln}\left(\mathrm{2}\right)\:\Rightarrow\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{arctan}\left({t}\right)}{\mathrm{1}+{t}^{\mathrm{2}} }{dt}\:=\frac{\pi}{\mathrm{4}}{ln}\mathrm{2}−\frac{\pi}{\mathrm{8}}{ln}\left(\mathrm{2}\right)\:\Rightarrow{I}=\frac{{ln}\left(\mathrm{2}\right)}{\mathrm{8}} \\ $$