Question Number 72294 by mr W last updated on 27/Oct/19
Commented by mr W last updated on 27/Oct/19
$${the}\:{distances}\:{from}\:{a}\:{point}\:{to}\:{three} \\ $$$${vertices}\:{of}\:{a}\:{square}\:{are}\:{known}. \\ $$$${find}\:{the}\:{side}\:{length}\:{of}\:{the}\:{square}. \\ $$
Commented by Prithwish sen last updated on 27/Oct/19
$$\boldsymbol{\mathrm{s}}_{\mathrm{3}} ^{\mathrm{2}} +\boldsymbol{\mathrm{s}}_{\mathrm{2}} ^{\mathrm{2}} \:=\:\boldsymbol{\mathrm{a}}^{\mathrm{2}} …..\left(\boldsymbol{\mathrm{i}}\right) \\ $$$$\boldsymbol{\mathrm{s}}_{\mathrm{3}} ^{\mathrm{2}} +\boldsymbol{\mathrm{s}}_{\mathrm{1}} ^{\mathrm{2}} \:=\:\boldsymbol{\mathrm{b}}^{\mathrm{2}} …..\left(\boldsymbol{\mathrm{ii}}\right) \\ $$$$\boldsymbol{\mathrm{s}}_{\mathrm{1}} ^{\mathrm{2}} +\boldsymbol{\mathrm{s}}_{\mathrm{4}} ^{\mathrm{2}} =\:\boldsymbol{\mathrm{c}}^{\mathrm{2}} ……\left(\boldsymbol{\mathrm{iii}}\right) \\ $$$$\boldsymbol{\mathrm{and}}\:\boldsymbol{\mathrm{s}}_{\mathrm{1}} +\boldsymbol{\mathrm{s}}_{\mathrm{2}} \:=\:\boldsymbol{\mathrm{s}}_{\mathrm{3}} +\boldsymbol{\mathrm{s}}_{\mathrm{4}} \:=\:\boldsymbol{\mathrm{s}}\:…..\left(\boldsymbol{\mathrm{iv}}\right) \\ $$$$\boldsymbol{\mathrm{solving}}\:\boldsymbol{\mathrm{all}}\:\boldsymbol{\mathrm{these}} \\ $$$$\boldsymbol{\mathrm{s}}_{\mathrm{2}} =\:\frac{\boldsymbol{\mathrm{s}}^{\mathrm{2}} −\boldsymbol{\mathrm{b}}^{\mathrm{2}} +\boldsymbol{\mathrm{a}}^{\mathrm{2}} }{\mathrm{2}\boldsymbol{\mathrm{s}}}\:….\left(\boldsymbol{\mathrm{v}}\right) \\ $$$$\boldsymbol{\mathrm{s}}_{\mathrm{3}} \:=\:\frac{\boldsymbol{\mathrm{s}}^{\mathrm{2}} +\boldsymbol{\mathrm{b}}^{\mathrm{2}} −\boldsymbol{\mathrm{c}}^{\mathrm{2}} }{\mathrm{2}\boldsymbol{\mathrm{s}}} \\ $$$$\boldsymbol{\mathrm{putting}}\:\boldsymbol{\mathrm{these}}\:\boldsymbol{\mathrm{on}}\:\left(\boldsymbol{\mathrm{i}}\right) \\ $$$$\left[\frac{\boldsymbol{\mathrm{s}}^{\mathrm{2}} −\boldsymbol{\mathrm{b}}^{\mathrm{2}} +\boldsymbol{\mathrm{a}}^{\mathrm{2}} }{\mathrm{2}\boldsymbol{\mathrm{s}}}\right]^{\mathrm{2}} +\left[\frac{\boldsymbol{\mathrm{s}}^{\mathrm{2}} +\boldsymbol{\mathrm{b}}^{\mathrm{2}} −\boldsymbol{\mathrm{c}}^{\mathrm{2}} }{\mathrm{2}\boldsymbol{\mathrm{s}}}\right]^{\mathrm{2}} =\:\boldsymbol{\mathrm{a}}^{\mathrm{2}} \\ $$$$\mathrm{2}\boldsymbol{\mathrm{s}}^{\mathrm{4}} −\mathrm{2}\boldsymbol{\mathrm{s}}^{\mathrm{2}} \left(\boldsymbol{\mathrm{a}}^{\mathrm{2}} +\boldsymbol{\mathrm{c}}^{\mathrm{2}} \right)+\left[\left(\boldsymbol{\mathrm{a}}^{\mathrm{2}} −\boldsymbol{\mathrm{b}}^{\mathrm{2}} \right)^{\mathrm{2}} +\left(\boldsymbol{\mathrm{c}}^{\mathrm{2}} −\boldsymbol{\mathrm{b}}^{\mathrm{2}} \right)^{\mathrm{2}} \right]=\mathrm{0} \\ $$$$\therefore\boldsymbol{\mathrm{s}}^{\mathrm{2}} \:=\:\frac{\boldsymbol{\mathrm{a}}^{\mathrm{2}} +\boldsymbol{\mathrm{c}}^{\mathrm{2}} }{\mathrm{2}}\pm\sqrt{\boldsymbol{\mathrm{b}}^{\mathrm{2}} \left(\boldsymbol{\mathrm{a}}^{\mathrm{2}} +\boldsymbol{\mathrm{c}}^{\mathrm{2}} −\boldsymbol{\mathrm{b}}^{\mathrm{2}} \right)−\left[\frac{\boldsymbol{\mathrm{a}}^{\mathrm{2}} −\boldsymbol{\mathrm{c}}^{\mathrm{2}} }{\mathrm{2}}\right]^{\mathrm{2}} } \\ $$
Commented by Prithwish sen last updated on 27/Oct/19
Commented by mr W last updated on 27/Oct/19
$${thanks}\:{sir}! \\ $$
Answered by mr W last updated on 27/Oct/19
$${a}^{\mathrm{2}} ={s}^{\mathrm{2}} +{b}^{\mathrm{2}} −\mathrm{2}{bs}\:\mathrm{cos}\:\alpha \\ $$$$\Rightarrow\mathrm{2}{bs}\:\mathrm{cos}\:\alpha={s}^{\mathrm{2}} +{b}^{\mathrm{2}} −{a}^{\mathrm{2}} \:\:\:…\left({i}\right) \\ $$$${c}^{\mathrm{2}} ={s}^{\mathrm{2}} +{b}^{\mathrm{2}} −\mathrm{2}{bs}\:\mathrm{cos}\:\left(\frac{\pi}{\mathrm{2}}−\alpha\right) \\ $$$$\Rightarrow\mathrm{2}{bs}\:\mathrm{sin}\:\alpha={s}^{\mathrm{2}} +{b}^{\mathrm{2}} −{c}^{\mathrm{2}} \:\:\:…\left({ii}\right) \\ $$$$\left({i}\right)^{\mathrm{2}} +\left({ii}\right)^{\mathrm{2}} : \\ $$$$\mathrm{4}{b}^{\mathrm{2}} {s}^{\mathrm{2}} =\left({s}^{\mathrm{2}} +{b}^{\mathrm{2}} −{a}^{\mathrm{2}} \right)^{\mathrm{2}} +\left({s}^{\mathrm{2}} +{b}^{\mathrm{2}} −{c}^{\mathrm{2}} \right)^{\mathrm{2}} \\ $$$$\Rightarrow{s}^{\mathrm{4}} −\left({a}^{\mathrm{2}} +{c}^{\mathrm{2}} \right){s}^{\mathrm{2}} −{b}^{\mathrm{2}} \left({a}^{\mathrm{2}} +{c}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)+\frac{{a}^{\mathrm{4}} +{c}^{\mathrm{4}} }{\mathrm{2}}=\mathrm{0} \\ $$$$\Rightarrow{s}^{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{2}}\left\{{a}^{\mathrm{2}} +{c}^{\mathrm{2}} \pm\sqrt{{a}^{\mathrm{4}} +\mathrm{2}{a}^{\mathrm{2}} {c}^{\mathrm{2}} +{c}^{\mathrm{4}} +\mathrm{4}{b}^{\mathrm{2}} \left({a}^{\mathrm{2}} +{c}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)−\mathrm{2}{a}^{\mathrm{4}} −\mathrm{2}{c}^{\mathrm{4}} }\right\} \\ $$$$\Rightarrow{s}^{\mathrm{2}} =\frac{{a}^{\mathrm{2}} +{c}^{\mathrm{2}} }{\mathrm{2}}\pm\sqrt{{b}^{\mathrm{2}} \left({a}^{\mathrm{2}} +{c}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)−\left(\frac{{a}^{\mathrm{2}} −{c}^{\mathrm{2}} }{\mathrm{2}}\right)^{\mathrm{2}} } \\ $$$${b}^{\mathrm{2}} \left({a}^{\mathrm{2}} +{c}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)−\left(\frac{{a}^{\mathrm{2}} −{c}^{\mathrm{2}} }{\mathrm{2}}\right)^{\mathrm{2}} \geqslant\mathrm{0} \\ $$$${b}^{\mathrm{4}} −\left({a}^{\mathrm{2}} +{c}^{\mathrm{2}} \right){b}^{\mathrm{2}} +\left(\frac{{a}^{\mathrm{2}} −{c}^{\mathrm{2}} }{\mathrm{2}}\right)^{\mathrm{2}} \leqslant\mathrm{0} \\ $$$$\Rightarrow{b}^{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{2}}\left({a}^{\mathrm{2}} +{c}^{\mathrm{2}} \pm\mathrm{2}{ac}\right)=\frac{\left({a}\pm{c}\right)^{\mathrm{2}} }{\mathrm{2}} \\ $$$$\Rightarrow\frac{\mid{a}−{c}\mid}{\:\sqrt{\mathrm{2}}}\leqslant{b}\leqslant\frac{{a}+{c}}{\:\sqrt{\mathrm{2}}} \\ $$$${example}: \\ $$$${a}=\mathrm{1},\:{b}=\mathrm{2},\:{b}=\mathrm{3} \\ $$$${s}^{\mathrm{2}} =\frac{\mathrm{1}+\mathrm{9}}{\mathrm{2}}\pm\sqrt{\mathrm{4}\left(\mathrm{1}+\mathrm{9}−\mathrm{4}\right)−\left(\frac{\mathrm{1}−\mathrm{9}}{\mathrm{2}}\right)^{\mathrm{2}} } \\ $$$${s}^{\mathrm{2}} =\mathrm{5}\pm\mathrm{2}\sqrt{\mathrm{2}} \\ $$