Question Number 72346 by aliesam last updated on 27/Oct/19
Commented by mathmax by abdo last updated on 27/Oct/19
$${I}\:=\int_{\mathrm{0}} ^{\infty} \:\frac{{ln}\left({x}^{\mathrm{10}} +{x}^{\mathrm{6}} \:+{x}^{\mathrm{4}} \:+\mathrm{1}\right)}{\left({x}+\mathrm{1}\right)^{\mathrm{3}} }{dx}\:\:\:{by}\:{psrts}\:{u}^{'} =\left({x}+\mathrm{1}\right)^{−\mathrm{3}} \:{and}\:{v}= \\ $$$${ln}\left({x}^{\mathrm{10}} \:+{x}^{\mathrm{6}} \:+{x}^{\mathrm{4}} \:+\mathrm{1}\right)\:\Rightarrow{I}=\left[−\frac{\mathrm{1}}{\mathrm{2}}\left({x}+\mathrm{1}\right)^{−\mathrm{2}} {ln}\left({x}^{\mathrm{10}} \:+{x}^{\mathrm{6}} \:+{x}^{\mathrm{4}} \:+\mathrm{1}\right)\right]_{\mathrm{0}} ^{+\infty} \\ $$$$−\int_{\mathrm{0}} ^{\infty} \:\left(−\frac{\mathrm{1}}{\mathrm{2}}\right)\left({x}+\mathrm{1}\right)^{−\mathrm{2}} ×\frac{\mathrm{10}{x}^{\mathrm{2}} \:+\mathrm{6}{x}^{\mathrm{5}} \:+\mathrm{4}{x}^{\mathrm{3}} }{{x}^{\mathrm{10}} \:+{x}^{\mathrm{6}} \:+{x}^{\mathrm{4}} \:+\mathrm{1}}{dx} \\ $$$$=\mathrm{0}\:+\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{\mathrm{10}{x}^{\mathrm{2}} \:+\mathrm{6}{x}^{\mathrm{5}} \:+\mathrm{4}{x}^{\mathrm{3}} }{\left({x}+\mathrm{2}\right)^{\mathrm{2}} \left({x}^{\mathrm{10}} \:+{x}^{\mathrm{6}} \:+{x}^{\mathrm{4}} \:+\mathrm{1}\right)}{dx}\:{rest}\:{to}\:{decompose} \\ $$$${F}\left({x}\right)=\frac{\mathrm{10}{x}^{\mathrm{2}} \:+\mathrm{6}{x}^{\mathrm{5}} \:+\mathrm{4}{x}^{\mathrm{3}} }{\left({x}+\mathrm{2}\right)^{\mathrm{2}} \left({x}^{\mathrm{10}} \:+{x}^{\mathrm{6}} \:+{x}^{\mathrm{4}} \:+\mathrm{1}\right)}\:…{be}\:{continued}… \\ $$