Menu Close

Question-72434




Question Number 72434 by aliesam last updated on 28/Oct/19
Answered by mind is power last updated on 28/Oct/19
(c/(sin(x)))=(d/(sin(y)))=((BD)/(sin(40)))  BD^2 =a^2 +b^2 −2abcos(40)  ((sin(y)BD)/(sin(40)))=d,c=((sin(x).bD)/(sin(40)))  (a+b)^2 ≥3(ab+cd)⇔a^2 +b^2 −ab≥3cd  (a^2 +b^2 −2abcos(40))=BD^2 ≤a^2 +b^2 −ab  2cos(40)≥1  cd=((BD^2 sin^z (x)sin^2 (y))/(sin^2 (40)))  3cd=((3BD^2 sin^2 (x)sin^2 (y))/(sin^2 (40)))≤BD^2   ⇔3sin^2 (x)sin^2 (y)≤sin^2 (40)  x+y=40  ⇒x or y≤20  sin(x)≤sin(20)≤sin(30)=(1/2)≤(1/( (√3)))  sin(y)≤sin(40)    ⇒3sin^2 (x)sin^2 (y)≤3.((1/( (√3))))^2 .sin^2 (40)=sin^2 (40)  ⇒3cd≤DB^2 ≤a^2 −ab+b^2 ⇔3(cd+ab)≤(a+b)^2
csin(x)=dsin(y)=BDsin(40)BD2=a2+b22abcos(40)sin(y)BDsin(40)=d,c=sin(x).bDsin(40)(a+b)23(ab+cd)a2+b2ab3cd(a2+b22abcos(40))=BD2a2+b2ab2cos(40)1cd=BD2sinz(x)sin2(y)sin2(40)3cd=3BD2sin2(x)sin2(y)sin2(40)BD23sin2(x)sin2(y)sin2(40)x+y=40xory20sin(x)sin(20)sin(30)=1213sin(y)sin(40)3sin2(x)sin2(y)3.(13)2.sin2(40)=sin2(40)3cdDB2a2ab+b23(cd+ab)(a+b)2
Commented by aliesam last updated on 28/Oct/19
god bless you sir. nice solution
godblessyousir.nicesolution
Commented by mind is power last updated on 28/Oct/19
y′re welcom
yrewelcom

Leave a Reply

Your email address will not be published. Required fields are marked *