Menu Close

Question-72773




Question Number 72773 by ajfour last updated on 02/Nov/19
Commented by ajfour last updated on 02/Nov/19
If parabola in xz plane has eq.  z=ax^2    find eq. of shadow of  this parabola on ground (xy plane).
Ifparabolainxzplanehaseq.z=ax2findeq.ofshadowofthisparabolaonground(xyplane).
Commented by MJS last updated on 02/Nov/19
you get a hyperbola with  y=(d/2)((√(1+((4ax^2 )/h)))−1)
yougetahyperbolawithy=d2(1+4ax2h1)
Answered by mr W last updated on 02/Nov/19
let′s say the shadow of point P(x,z) in  plane xz is point Q(u,v) in plane xy.  in 3D−system:  S(0,−d,h)  P(x,0,z)  Q(u,v,0)  (u/x)=((v+d)/d)=((−h)/(z−h))  ⇒x=(du/(v+d))  ⇒z=((hv)/(v+d))    example:  the shadow of parabola z=ax^2 :  z=ax^2   ⇒((hv)/(v+d))=a((du/(v+d)))^2   ⇒v(v+d)=((ad^2 u^2 )/h)  or  ⇒y(y+d)=((ad^2 x^2 )/h)  ← eqn. of shadow  or  ⇒y=((√(1+((4ax^2 )/h)))−1)(d/2)    the shadow of circle x^2 +(z−r)^2 =r^2 :  x^2 +(z−r)^2 =r^2   ((du/(v+d)))^2 +(((hv)/(v+d))−r)^2 =r^2   or  ⇒d^2 x^2 =hy[(2r−h)y+2rd]  or  ⇒y=((−rhd+d(√(r^2 h^2 −(2r−h)hx^2 )))/(2r−h))
letssaytheshadowofpointP(x,z)inplanexzispointQ(u,v)inplanexy.in3Dsystem:S(0,d,h)P(x,0,z)Q(u,v,0)ux=v+dd=hzhx=duv+dz=hvv+dexample:theshadowofparabolaz=ax2:z=ax2hvv+d=a(duv+d)2v(v+d)=ad2u2hory(y+d)=ad2x2heqn.ofshadowory=(1+4ax2h1)d2theshadowofcirclex2+(zr)2=r2:x2+(zr)2=r2(duv+d)2+(hvv+dr)2=r2ord2x2=hy[(2rh)y+2rd]ory=rhd+dr2h2(2rh)hx22rh
Commented by ajfour last updated on 02/Nov/19
Thank you MjS Sir, mrW Sir.
ThankyouMjSSir,mrWSir.

Leave a Reply

Your email address will not be published. Required fields are marked *