Menu Close

Question-72930




Question Number 72930 by TawaTawa last updated on 05/Nov/19
Answered by ajfour last updated on 05/Nov/19
Commented by ajfour last updated on 05/Nov/19
Rsin α=R−2r  EF =(r/(tan ((π/4)−(α/2))))+r = 2Rsin α  ⇒  let  (r/R)=x  ⇒  sin α=1−2x   let  (α/2) = θ ,   tan θ=m  ⇒  ((2m)/(1+m^2 ))=1−2x  ⇒  m^2 −((2m)/((1−2x)))+1=0  and    x(((1+m)/(1−m))+1)= 2(1−2x)  ⇒  x=(1−2x)(1−m)  or      m=1−(x/(1−2x)) = ((1−3x)/(1−2x))  ⇒  (((1−3x)/(1−2x)))^2 −((2(1−3x))/((1−2x)^2 ))+1=0  ⇒ (1−3x)^2 −2(1−3x)+(1−2x)^2 =0  13x^2 −4x = 0  ⇒   x=(4/(13))   ((shaded area)/(area of semicircle)) = ((2πr^2 )/(πR^2 /2))           = 4x^2  = ((64)/(169)) ∙
Rsinα=R2rEF=rtan(π4α2)+r=2RsinαletrR=xsinα=12xletα2=θ,tanθ=m2m1+m2=12xm22m(12x)+1=0andx(1+m1m+1)=2(12x)x=(12x)(1m)orm=1x12x=13x12x(13x12x)22(13x)(12x)2+1=0(13x)22(13x)+(12x)2=013x24x=0x=413shadedareaareaofsemicircle=2πr2πR2/2=4x2=64169
Commented by TawaTawa last updated on 05/Nov/19
God bless you sir. Thanks for your time
Godblessyousir.Thanksforyourtime

Leave a Reply

Your email address will not be published. Required fields are marked *