Menu Close

Question-73030




Question Number 73030 by Tanmay chaudhury last updated on 05/Nov/19
Answered by Tanmay chaudhury last updated on 05/Nov/19
∫_0 ^4 ((ln2)/(lnx))−((ln2×ln2)/(lnx×lnx×ln2))dx  ln2∫_2 ^4 (1/(lnx))−(1/((lnx)^2 ))dx  ln2∫_2 ^4 ((lnx−1)/((lnx)^2 ))dx  ln2∫_2 ^4 ((lnx.(dx/dx)−x.(d/dx)(lnx)  )/((lnx)^2 ))dx^   ln2∫_2 ^4 (d/dx)((x/(lnx)))dx   ln2×∣(x/(lnx))∣_2 ^4   ln2×((4/(ln4))−(2/(ln2)))  ln2×((4/(2ln2))−(2/(ln2)))=0  answer
04ln2lnxln2×ln2lnx×lnx×ln2dxln2241lnx1(lnx)2dxln224lnx1(lnx)2dxln224lnx.dxdxx.ddx(lnx)(lnx)2dxln224ddx(xlnx)dxln2×xlnx24ln2×(4ln42ln2)ln2×(42ln22ln2)=0answer
Answered by mind is power last updated on 05/Nov/19
∫_2 ^4 (log_x (2)−(((log_x (2))^2 )/(ln(2))))dx  =∫((ln(2))/(ln(x)))−((ln(2))/(ln^2 (x)))dx  =ln(2)∫((ln(x)−1)/(ln^2 (x)))dx  =ln(2)∫d((x/(ln(x))))=ln2[(x/(ln(x)))]_2 ^4 =((4ln(2))/(ln(4)))−((2ln(2))/(ln(2)))=2−2=0
24(logx(2)(logx(2))2ln(2))dx=ln(2)ln(x)ln(2)ln2(x)dx=ln(2)ln(x)1ln2(x)dx=ln(2)d(xln(x))=ln2[xln(x)]24=4ln(2)ln(4)2ln(2)ln(2)=22=0
Commented by Tanmay chaudhury last updated on 05/Nov/19
thank you sir...
thankyousir
Commented by mind is power last updated on 05/Nov/19
y′re welcom
yrewelcom

Leave a Reply

Your email address will not be published. Required fields are marked *