Menu Close

Question-7314




Question Number 7314 by Rasheed Soomro last updated on 23/Aug/16
Commented by Rasheed Soomro last updated on 23/Aug/16
Top and bottom of a solid are congruent circles.  Above is the cross-section of the solid, which   is obtained by cutting the solid in two equal parts.  Find out the volume of the solid.
Topandbottomofasolidarecongruentcircles.Aboveisthecrosssectionofthesolid,whichisobtainedbycuttingthesolidintwoequalparts.Findoutthevolumeofthesolid.
Answered by Yozzia last updated on 24/Aug/16
Define the circle w with cartesian  equation x^2 +(y−r_1 )^2 =r_2 ^2  where r_1 >r_2 >0.  ⇒y=r_1 ±(√(r_2 ^2 −x^2 ))  {∣x∣≤r_2 }.  The problem given can be viewed as finding  the volume V of the figure generated  when a part of w, whose y coordinates  satisfy 0<y≤r_1 , is rotated 2π radians  about the x−axis.  ∴ y=r_1 −(√(r_2 ^2 −x^2 ))    {∣x∣≤r_2 }.  Using V=π∫_(−r_2 ) ^( r_2 ) y^2 dx we get  V=2π∫_0 ^r_2  (r_1 −(√(r_2 ^2 −x^2 )))^2 dx   {y^2  is even}.  V=2π∫_0 ^r_2  {r_1 ^2 +r_2 ^2 −x^2 −2r_1 (√(r_2 ^2 −x^2 ))}dx  Let x=r_2 sinθ  0≤θ≤2π.⇒dx=r_2 cosθdθ.  At x=0,θ=0 and at x=r_2 , θ=(π/2).  ∴V=2πr_2 ∫_0 ^(π/2) {r_1 ^2 +r_2 ^2 −r_2 ^2 sin^2 θ−2r_1 (√(r_2 ^2 −r_2 ^2 sin^2 θ))}cosθdθ  V=2πr_2 [∫_0 ^(π/2) (r_1 ^2 +r_2 ^2 )cosθ dθ−r_2 ^2 ∫_0 ^(π/2) sin^2 θcosθdθ−2r_1 r_2 ∫_0 ^(π/2) cos^2 θdθ]  V=2πr_2 [r_1 ^2 +r_2 ^2 −{((r_2 ^2 u^3 )/3)}_0 ^1 −r_1 r_2 ∫_0 ^(π/2) (1+cos2θ)dθ]  V=2πr_2 [r_1 ^2 +r_2 ^2 −(r_2 ^2 /3)−r_1 r_2 {θ+(1/2)sin2θ}_0 ^(π/2) ]  V=2πr_2 [r_1 ^2 +(2/3)r_2 ^2 −((r_1 r_2 π)/2)]  V=((πr_2 )/3)[6r_1 ^2 +4r_2 ^2 −3πr_1 r_2 ]  V=((2πr_2 )/3)(3r_1 ^2 +2r_2 ^2 )−π^2 r_1 r_2 ^2   V=2πr_1 ^2 r_2 +((4πr_2 ^3 )/3)−π^2 r_2 ^2 r_1   −−−−−−−−−−−−−−−−−−−−−−−−−−  By Pappus−Guldin theorem,                       V=2πAy^�      where A=area bounded between   y=r_1 −(√(r_2 ^2 −x^2 )), lines y=0, x=±r_2   and y^� =distance of centroid of A from  axis of rotation (y=0).  ∴ y^� =(V/(2πA)).  It can be shown that A=((r_2 (4r_1 −πr_2 ))/2).  ∴ y^� =((((πr_2 )/3)(6r_1 ^2 +4r_2 ^2 −3πr_1 r_2 ))/(2π((r_2 (4r_1 −πr_2 ))/2)))  or y^� =((6r_1 ^2 +4r_2 ^2 −3πr_1 r_2 )/(3(4r_1 −πr_2 )))
Definethecirclewwithcartesianequationx2+(yr1)2=r22wherer1>r2>0.y=r1±r22x2{x∣⩽r2}.TheproblemgivencanbeviewedasfindingthevolumeVofthefiguregeneratedwhenapartofw,whoseycoordinatessatisfy0<yr1,isrotated2πradiansaboutthexaxis.y=r1r22x2{x∣⩽r2}.UsingV=πr2r2y2dxwegetV=2π0r2(r1r22x2)2dx{y2iseven}.V=2π0r2{r12+r22x22r1r22x2}dxLetx=r2sinθ0θ2π.dx=r2cosθdθ.Atx=0,θ=0andatx=r2,θ=π2.V=2πr20π/2{r12+r22r22sin2θ2r1r22r22sin2θ}cosθdθV=2πr2[0π/2(r12+r22)cosθdθr220π/2sin2θcosθdθ2r1r20π/2cos2θdθ]V=2πr2[r12+r22{r22u33}01r1r20π/2(1+cos2θ)dθ]V=2πr2[r12+r22r223r1r2{θ+12sin2θ}0π/2]V=2πr2[r12+23r22r1r2π2]V=πr23[6r12+4r223πr1r2]V=2πr23(3r12+2r22)π2r1r22V=2πr12r2+4πr233π2r22r1ByPappusGuldintheorem,V=2πAy¯whereA=areaboundedbetweeny=r1r22x2,linesy=0,x=±r2andy¯=distanceofcentroidofAfromaxisofrotation(y=0).y¯=V2πA.ItcanbeshownthatA=r2(4r1πr2)2.y¯=πr23(6r12+4r223πr1r2)2πr2(4r1πr2)2ory¯=6r12+4r223πr1r23(4r1πr2)
Commented by Rasheed Soomro last updated on 24/Aug/16
THANKS! I am trying to understand. At the moment   I am not much involved in analytic approach.
THANKS!Iamtryingtounderstand.AtthemomentIamnotmuchinvolvedinanalyticapproach.
Commented by Yozzia last updated on 24/Aug/16
Commented by Yozzia last updated on 24/Aug/16
The volume you seek can be found  by rotating the lower section of the   circle x^2 +(y−r_1 )^2 =r_2 ^2    360° about  the x−axis. I have used full ink to  show the lower section and the upper  section is in broken ink.
Thevolumeyouseekcanbefoundbyrotatingthelowersectionofthecirclex2+(yr1)2=r22360°aboutthexaxis.Ihaveusedfullinktoshowthelowersectionandtheuppersectionisinbrokenink.
Commented by Rasheed Soomro last updated on 24/Aug/16
THαnkS Again! The graph and the comment  is great help in understanding your answer!  I had another idea:       Volume of cylinder−semi-circle gape around         Semi-circle gape=((πr_2 ^( 2) )/2)×circumference.  I was in confusion which circle-circumference  should be used. Circle with radius r_(1 ) or circle  with radius r_1 −r_2  or average of the both.  Perhaps I am not successful to clear my idea.
THαnkSAgain!Thegraphandthecommentisgreathelpinunderstandingyouranswer!Ihadanotheridea:VolumeofcylindersemicirclegapearoundSemicirclegape=πr222×circumference.Iwasinconfusionwhichcirclecircumferenceshouldbeused.Circlewithradiusr1orcirclewithradiusr1r2oraverageoftheboth.PerhapsIamnotsuccessfultoclearmyidea.
Commented by Yozzia last updated on 24/Aug/16
−−−−−−−−−−−−−−−−−−−−−−−−−  Centroid of semicircular area is ((4r_2 )/(3π)) from the center of straight edge.  ∴ Required distance=(r_1 −r_2 )+(r_2 −((4r_2 )/(3π)))=r_1 −((4r_2 )/(3π))  Circumference=2π(r_1 −((4r_2 )/(3π)))=2πr_1 −((8r_2 )/3)=c  volume=((πr_2 ^2 )/2)(2πr_1 −((8r_2 )/3))=π^2 r_1 r_2 ^2 −((4πr_2 ^3 )/3)  ⇒Required volume=2πr_1 ^2 r_2 −c=2πr_1 ^2 r_2 +((4πr_2 ^3 )/3)−π^2 r_1 r_2 ^2   as was found.
Centroidofsemicircularareais4r23πfromthecenterofstraightedge.Requireddistance=(r1r2)+(r24r23π)=r14r23πCircumference=2π(r14r23π)=2πr18r23=cvolume=πr222(2πr18r23)=π2r1r224πr233Requiredvolume=2πr12r2c=2πr12r2+4πr233π2r1r22aswasfound.

Leave a Reply

Your email address will not be published. Required fields are marked *