Menu Close

Question-73274




Question Number 73274 by peter frank last updated on 09/Nov/19
Commented by kaivan.ahmadi last updated on 09/Nov/19
t=0⇒x=1 , y=0⇒  (∂f/∂t)=(∂f/∂x)×(∂x/∂t)+(∂f/∂y)×(∂y/∂t)=  (siny+e^x cosy)(2t)+(xcosy−e^x siny)(2t)∣_(t=0) =  e×0+(1−0)(0)=0
$${t}=\mathrm{0}\Rightarrow{x}=\mathrm{1}\:,\:{y}=\mathrm{0}\Rightarrow \\ $$$$\frac{\partial{f}}{\partial{t}}=\frac{\partial{f}}{\partial{x}}×\frac{\partial{x}}{\partial{t}}+\frac{\partial{f}}{\partial{y}}×\frac{\partial{y}}{\partial{t}}= \\ $$$$\left({siny}+{e}^{{x}} {cosy}\right)\left(\mathrm{2}{t}\right)+\left({xcosy}−{e}^{{x}} {siny}\right)\left(\mathrm{2}{t}\right)\mid_{{t}=\mathrm{0}} = \\ $$$${e}×\mathrm{0}+\left(\mathrm{1}−\mathrm{0}\right)\left(\mathrm{0}\right)=\mathrm{0} \\ $$
Commented by peter frank last updated on 09/Nov/19
thank you
$${thank}\:{you} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *