Menu Close

Question-73503




Question Number 73503 by ajfour last updated on 13/Nov/19
Commented by ajfour last updated on 13/Nov/19
Find the illuminated curved  area of cone with radius a, and  altitude a(√3) . Only the right half  of cone is there with left half  covered but with a largest circular  opening in it. Light is incident  from a plane wall sending  horizontal parallel rays.
$${Find}\:{the}\:{illuminated}\:{curved} \\ $$$${area}\:{of}\:{cone}\:{with}\:{radius}\:{a},\:{and} \\ $$$${altitude}\:{a}\sqrt{\mathrm{3}}\:.\:{Only}\:{the}\:{right}\:{half} \\ $$$${of}\:{cone}\:{is}\:{there}\:{with}\:{left}\:{half} \\ $$$${covered}\:{but}\:{with}\:{a}\:{largest}\:{circular} \\ $$$${opening}\:{in}\:{it}.\:{Light}\:{is}\:{incident} \\ $$$${from}\:{a}\:{plane}\:{wall}\:{sending} \\ $$$${horizontal}\:{parallel}\:{rays}.\:\:\:\:\:\:\:\: \\ $$
Commented by mr W last updated on 14/Nov/19
how is the answer, if the opening is  a square?
$${how}\:{is}\:{the}\:{answer},\:{if}\:{the}\:{opening}\:{is} \\ $$$${a}\:{square}? \\ $$
Answered by mr W last updated on 13/Nov/19
Commented by mr W last updated on 14/Nov/19
OD′=(√3)a  OC=OD=2a  C′D′=a sin θ  OC′=(√(3a^2 +a^2 sin^2  θ))=a(√(3+sin^2  θ))  ∠C′OD′=ϕ  tan ϕ=((sin θ)/( (√3)))  ⇒cos ϕ=((√3)/( (√(3+sin^2  θ))))  ⇒4cos^2  ϕ−3=((3 cos^2  θ)/(3+sin^2  θ))  r=(a/( (√3)))  OM=((2a)/( (√3)))  r^2 =OA′^2 +OM^2 −2×OA′×OM cos ϕ  (a^2 /3)=OA′^2 +((4a^2 )/3)−2×OA′×((2a)/( (√3))) cos ϕ  OA′^2 −OA′×((4a)/( (√3))) cos ϕ+a^2 =0  OA′=((2a cos ϕ)/( (√3)))−(√(((4a^2  cos^2  ϕ)/3)−a^2 ))  OA′=(((2 cos ϕ−(√(4 cos^2  ϕ−3)))a)/( (√3)))  OB′=(((2 cos ϕ+(√(4 cos^2  ϕ−3)))a)/( (√3)))  ((OA)/(OA′))=((OC)/(OC′))=(2/( (√(3+sin^2  θ))))  ⇒OA=((2(2 cos ϕ−(√(4 cos^2  ϕ−3)))a)/( (√(3(3+sin^2  θ)))))  similarly  ⇒OB=((2(2 cos ϕ+(√(4 cos^2  ϕ−3)))a)/( (√(3(3+sin^2  θ)))))  CD^(⌢) =a θ=2a φ  ⇒φ=(θ/2)  dA=(1/2)(OB^2 −OA^2 )dφ  dA=2a^2 [(((2 cos ϕ+(√(4 cos^2  ϕ−3)))^2 −(2 cos ϕ−(√(4 cos^2  ϕ−3)))^2 )/(3(3+sin^2  θ)))]dφ  dA=((8a^2 )/3)[((cos ϕ (√(4 cos^2  ϕ−3)))/(3+sin^2  θ))]dθ  dA=((8a^2  cos θ dθ)/((3+sin^2  θ)^2 ))  A=2×8a^2 ∫_0 ^(π/2) ((cos θ dθ)/((3+sin^2  θ)^2 ))  A=16a^2 ∫_0 ^(π/2) ((d (sin θ))/((3+sin^2  θ)^2 ))  A=16a^2 ∫_0 ^1 (dt/((3+t^2 )^2 ))  A=((8a^2 )/3)[(1/( (√3))) tan^(−1) (t/( (√3)))+(t/(t^2 +3))]_0 ^1   A=((8a^2 )/3)((1/( (√3)))×(π/6)+(1/4))  ⇒A=((2(2(√3)π+9)a^2 )/(27))≈1.4728a^2     Area of surface of semi−cone:  (1/2)×(π/2)×(2a)^2 =π a^2   ((1.4728a^2 )/(πa^2 ))=0.47=47%  i.e. 47% of the semi cone surface is  lighted.
$${OD}'=\sqrt{\mathrm{3}}{a} \\ $$$${OC}={OD}=\mathrm{2}{a} \\ $$$${C}'{D}'={a}\:\mathrm{sin}\:\theta \\ $$$${OC}'=\sqrt{\mathrm{3}{a}^{\mathrm{2}} +{a}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \:\theta}={a}\sqrt{\mathrm{3}+\mathrm{sin}^{\mathrm{2}} \:\theta} \\ $$$$\angle{C}'{OD}'=\varphi \\ $$$$\mathrm{tan}\:\varphi=\frac{\mathrm{sin}\:\theta}{\:\sqrt{\mathrm{3}}} \\ $$$$\Rightarrow\mathrm{cos}\:\varphi=\frac{\sqrt{\mathrm{3}}}{\:\sqrt{\mathrm{3}+\mathrm{sin}^{\mathrm{2}} \:\theta}} \\ $$$$\Rightarrow\mathrm{4cos}^{\mathrm{2}} \:\varphi−\mathrm{3}=\frac{\mathrm{3}\:\mathrm{cos}^{\mathrm{2}} \:\theta}{\mathrm{3}+\mathrm{sin}^{\mathrm{2}} \:\theta} \\ $$$${r}=\frac{{a}}{\:\sqrt{\mathrm{3}}} \\ $$$${OM}=\frac{\mathrm{2}{a}}{\:\sqrt{\mathrm{3}}} \\ $$$${r}^{\mathrm{2}} ={OA}'^{\mathrm{2}} +{OM}^{\mathrm{2}} −\mathrm{2}×{OA}'×{OM}\:\mathrm{cos}\:\varphi \\ $$$$\frac{{a}^{\mathrm{2}} }{\mathrm{3}}={OA}'^{\mathrm{2}} +\frac{\mathrm{4}{a}^{\mathrm{2}} }{\mathrm{3}}−\mathrm{2}×{OA}'×\frac{\mathrm{2}{a}}{\:\sqrt{\mathrm{3}}}\:\mathrm{cos}\:\varphi \\ $$$${OA}'^{\mathrm{2}} −{OA}'×\frac{\mathrm{4}{a}}{\:\sqrt{\mathrm{3}}}\:\mathrm{cos}\:\varphi+{a}^{\mathrm{2}} =\mathrm{0} \\ $$$${OA}'=\frac{\mathrm{2}{a}\:\mathrm{cos}\:\varphi}{\:\sqrt{\mathrm{3}}}−\sqrt{\frac{\mathrm{4}{a}^{\mathrm{2}} \:\mathrm{cos}^{\mathrm{2}} \:\varphi}{\mathrm{3}}−{a}^{\mathrm{2}} } \\ $$$${OA}'=\frac{\left(\mathrm{2}\:\mathrm{cos}\:\varphi−\sqrt{\mathrm{4}\:\mathrm{cos}^{\mathrm{2}} \:\varphi−\mathrm{3}}\right){a}}{\:\sqrt{\mathrm{3}}} \\ $$$${OB}'=\frac{\left(\mathrm{2}\:\mathrm{cos}\:\varphi+\sqrt{\mathrm{4}\:\mathrm{cos}^{\mathrm{2}} \:\varphi−\mathrm{3}}\right){a}}{\:\sqrt{\mathrm{3}}} \\ $$$$\frac{{OA}}{{OA}'}=\frac{{OC}}{{OC}'}=\frac{\mathrm{2}}{\:\sqrt{\mathrm{3}+\mathrm{sin}^{\mathrm{2}} \:\theta}} \\ $$$$\Rightarrow{OA}=\frac{\mathrm{2}\left(\mathrm{2}\:\mathrm{cos}\:\varphi−\sqrt{\mathrm{4}\:\mathrm{cos}^{\mathrm{2}} \:\varphi−\mathrm{3}}\right){a}}{\:\sqrt{\mathrm{3}\left(\mathrm{3}+\mathrm{sin}^{\mathrm{2}} \:\theta\right)}} \\ $$$${similarly} \\ $$$$\Rightarrow{OB}=\frac{\mathrm{2}\left(\mathrm{2}\:\mathrm{cos}\:\varphi+\sqrt{\mathrm{4}\:\mathrm{cos}^{\mathrm{2}} \:\varphi−\mathrm{3}}\right){a}}{\:\sqrt{\mathrm{3}\left(\mathrm{3}+\mathrm{sin}^{\mathrm{2}} \:\theta\right)}} \\ $$$$\overset{\frown} {{CD}}={a}\:\theta=\mathrm{2}{a}\:\phi \\ $$$$\Rightarrow\phi=\frac{\theta}{\mathrm{2}} \\ $$$${dA}=\frac{\mathrm{1}}{\mathrm{2}}\left({OB}^{\mathrm{2}} −{OA}^{\mathrm{2}} \right){d}\phi \\ $$$${dA}=\mathrm{2}{a}^{\mathrm{2}} \left[\frac{\left(\mathrm{2}\:\mathrm{cos}\:\varphi+\sqrt{\mathrm{4}\:\mathrm{cos}^{\mathrm{2}} \:\varphi−\mathrm{3}}\right)^{\mathrm{2}} −\left(\mathrm{2}\:\mathrm{cos}\:\varphi−\sqrt{\mathrm{4}\:\mathrm{cos}^{\mathrm{2}} \:\varphi−\mathrm{3}}\right)^{\mathrm{2}} }{\mathrm{3}\left(\mathrm{3}+\mathrm{sin}^{\mathrm{2}} \:\theta\right)}\right]{d}\phi \\ $$$${dA}=\frac{\mathrm{8}{a}^{\mathrm{2}} }{\mathrm{3}}\left[\frac{\mathrm{cos}\:\varphi\:\sqrt{\mathrm{4}\:\mathrm{cos}^{\mathrm{2}} \:\varphi−\mathrm{3}}}{\mathrm{3}+\mathrm{sin}^{\mathrm{2}} \:\theta}\right]{d}\theta \\ $$$${dA}=\frac{\mathrm{8}{a}^{\mathrm{2}} \:\mathrm{cos}\:\theta\:{d}\theta}{\left(\mathrm{3}+\mathrm{sin}^{\mathrm{2}} \:\theta\right)^{\mathrm{2}} } \\ $$$${A}=\mathrm{2}×\mathrm{8}{a}^{\mathrm{2}} \int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{cos}\:\theta\:{d}\theta}{\left(\mathrm{3}+\mathrm{sin}^{\mathrm{2}} \:\theta\right)^{\mathrm{2}} } \\ $$$${A}=\mathrm{16}{a}^{\mathrm{2}} \int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{d}\:\left(\mathrm{sin}\:\theta\right)}{\left(\mathrm{3}+\mathrm{sin}^{\mathrm{2}} \:\theta\right)^{\mathrm{2}} } \\ $$$${A}=\mathrm{16}{a}^{\mathrm{2}} \int_{\mathrm{0}} ^{\mathrm{1}} \frac{{dt}}{\left(\mathrm{3}+{t}^{\mathrm{2}} \right)^{\mathrm{2}} } \\ $$$${A}=\frac{\mathrm{8}{a}^{\mathrm{2}} }{\mathrm{3}}\left[\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}\:\mathrm{tan}^{−\mathrm{1}} \frac{{t}}{\:\sqrt{\mathrm{3}}}+\frac{{t}}{{t}^{\mathrm{2}} +\mathrm{3}}\right]_{\mathrm{0}} ^{\mathrm{1}} \\ $$$${A}=\frac{\mathrm{8}{a}^{\mathrm{2}} }{\mathrm{3}}\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}×\frac{\pi}{\mathrm{6}}+\frac{\mathrm{1}}{\mathrm{4}}\right) \\ $$$$\Rightarrow{A}=\frac{\mathrm{2}\left(\mathrm{2}\sqrt{\mathrm{3}}\pi+\mathrm{9}\right){a}^{\mathrm{2}} }{\mathrm{27}}\approx\mathrm{1}.\mathrm{4728}{a}^{\mathrm{2}} \\ $$$$ \\ $$$${Area}\:{of}\:{surface}\:{of}\:{semi}−{cone}: \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}×\frac{\pi}{\mathrm{2}}×\left(\mathrm{2}{a}\right)^{\mathrm{2}} =\pi\:{a}^{\mathrm{2}} \\ $$$$\frac{\mathrm{1}.\mathrm{4728}{a}^{\mathrm{2}} }{\pi{a}^{\mathrm{2}} }=\mathrm{0}.\mathrm{47}=\mathrm{47\%} \\ $$$${i}.{e}.\:\mathrm{47\%}\:{of}\:{the}\:{semi}\:{cone}\:{surface}\:{is} \\ $$$${lighted}. \\ $$
Commented by mr W last updated on 13/Nov/19
Commented by mr W last updated on 13/Nov/19
Commented by mr W last updated on 13/Nov/19
this is how the lighted area really  looks like:
$${this}\:{is}\:{how}\:{the}\:{lighted}\:{area}\:{really} \\ $$$${looks}\:{like}: \\ $$
Commented by mr W last updated on 14/Nov/19
Commented by ajfour last updated on 14/Nov/19
Thanks Sir, SPLENDID solution!  (nice reverse swing !).
$${Thanks}\:{Sir},\:\mathcal{SPLENDID}\:{solution}! \\ $$$$\left({nice}\:{reverse}\:{swing}\:!\right). \\ $$
Commented by mr W last updated on 14/Nov/19
thanks for viewing sir! it′s a very  nice question!
$${thanks}\:{for}\:{viewing}\:{sir}!\:{it}'{s}\:{a}\:{very} \\ $$$${nice}\:{question}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *