Menu Close

Question-7407




Question Number 7407 by Tawakalitu. last updated on 27/Aug/16
Commented by sou1618 last updated on 27/Aug/16
another solution  999^2 <1024^2 =2^(10×2) =2^(20)   so 999^2 <2^(20) <2^(999)
anothersolution9992<10242=210×2=220so9992<220<2999
Commented by Tawakalitu. last updated on 27/Aug/16
Thanks so much
Thankssomuch
Answered by sandy_suhendra last updated on 28/Aug/16
log 2^(999)  = 999×log 2 = 999×0.3=299.7  log 999^(2 ) = 2×log 999 = 2×2.99 = 5.98  log 2^(999) >log 999^2  so 2^(999 ) > 999^2
log2999=999×log2=999×0.3=299.7log9992=2×log999=2×2.99=5.98log2999>log9992so2999>9992
Commented by Tawakalitu. last updated on 27/Aug/16
Thanks so much.
Thankssomuch.
Answered by FilupSmith last updated on 28/Aug/16
2^(999)  >^?   999^2     let 999=2^k   k=((log 999)/(log 2))  ∴ 2^(999) >2^(2×((log 999)/(log 2)))   999>2×((log 999)/(log 2))  499.5 > ((3log(3)+log(37))/(log(2)))  499.5>log_a (t)  a^(499.5) >t     ⇒    2^(499.5) >999      (a=2, t=999)  true  ∴LHS>RHS  ∴ 2^(999) >999^2
2999>?9992let999=2kk=log999log22999>22×log999log2999>2×log999log2499.5>3log(3)+log(37)log(2)499.5>loga(t)a499.5>t2499.5>999(a=2,t=999)trueLHS>RHS2999>9992
Commented by FilupSmith last updated on 28/Aug/16
my attempt at a proof without approximating  logs
myattemptataproofwithoutapproximatinglogs

Leave a Reply

Your email address will not be published. Required fields are marked *