Menu Close

Question-74213




Question Number 74213 by FCB last updated on 20/Nov/19
Commented by MJS last updated on 20/Nov/19
information missing  I think the question is find minimum of the  expression  this should be at a=b=c=(1/3)  in this case the answer is ((69)/4)=17.25
informationmissingIthinkthequestionisfindminimumoftheexpressionthisshouldbeata=b=c=13inthiscasetheansweris694=17.25
Answered by mind is power last updated on 20/Nov/19
what is quation ?
whatisquation?
Answered by mind is power last updated on 20/Nov/19
a=b=0,c=1  =14+(7/2)=((35)/2)=17,5   min((7+2b)/(1+a))+((7+2c)/(1+b))+((7+2a)/(1+c))  a+b+c=1,a,b,c≥0  x=1+a,y=1+b,z=1+c⇒x+y+z=4  ⇔f(x,y,z)((2y+5)/x)+((5+2z)/y)+((5+2x)/z)=5((1/x)+(1/y)+(1/z))+2((y/x)+(z/y)+(x/z))  we will use Ha−GM−AR inqualite  (3/((1/x)+(1/y)+(1/z)))≤((xyz))^(1/3) ≤((x+y+z)/3)⇒(1/x)+(1/y)+(1/z)≥(9/(x+y+z))=(9/4)  ((y/x)+(z/y)+(x/z))≥3(((((y.x.z)/(x.y.z)))))^(1/3) =3  ⇒f(x,y,z)≥6+(9/4).5=6+11.25=17.25   equalitiy when x=y=z=(4/3)⇔a=b=c=(1/3)
a=b=0,c=1=14+72=352=17,5min7+2b1+a+7+2c1+b+7+2a1+ca+b+c=1,a,b,c0x=1+a,y=1+b,z=1+cx+y+z=4f(x,y,z)2y+5x+5+2zy+5+2xz=5(1x+1y+1z)+2(yx+zy+xz)wewilluseHaGMARinqualite31x+1y+1zxyz3x+y+z31x+1y+1z9x+y+z=94(yx+zy+xz)3(y.x.zx.y.z)3=3f(x,y,z)6+94.5=6+11.25=17.25equalitiywhenx=y=z=43a=b=c=13

Leave a Reply

Your email address will not be published. Required fields are marked *