Question Number 74235 by aliesam last updated on 20/Nov/19
Answered by Joel578 last updated on 20/Nov/19
$$\mid{x}\mid\:=\:\sqrt{{x}^{\mathrm{2}} } \\ $$$${f}\left({x}\right)\:=\:\sqrt{\left({x}^{\mathrm{2}} \:−\:\mathrm{3}\right)^{\mathrm{2}} } \\ $$$${f}\:'\left({x}\right)\:=\:\frac{\mathrm{1}}{\mathrm{2}\sqrt{\left({x}^{\mathrm{2}} \:−\:\mathrm{3}\right)^{\mathrm{2}} }}\:.\:\mathrm{2}\left({x}^{\mathrm{2}} \:−\:\mathrm{3}\right)\:.\:\mathrm{2}{x} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\frac{\mathrm{2}{x}\left({x}^{\mathrm{2}} \:−\:\mathrm{3}\right)}{\:\sqrt{\left({x}^{\mathrm{2}} \:−\:\mathrm{3}\right)^{\mathrm{2}} }} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\frac{\mathrm{2}{x}\left({x}^{\mathrm{2}} \:−\:\mathrm{3}\right)}{\mid{x}^{\mathrm{2}} \:−\:\mathrm{3}\mid} \\ $$
Commented by MJS last updated on 20/Nov/19
$$\frac{{a}}{\mid{a}\mid}=\frac{\mid{a}\mid}{{a}}=\mathrm{sign}\:{a} \\ $$$$\mathrm{usually}\:\mathrm{sign}\:\mathrm{0}\::=\mathrm{1} \\ $$$$\Rightarrow\:\mathrm{we}\:\mathrm{can}\:\mathrm{write}\:{f}'\left({x}\right)=\mathrm{2}{x}\:\mathrm{sign}\:\left({x}^{\mathrm{2}} −\mathrm{3}\right) \\ $$
Commented by Joel578 last updated on 21/Nov/19
$${thank}\:{you}\:{Sir} \\ $$
Answered by MJS last updated on 20/Nov/19
$$\mid{x}^{\mathrm{2}} −\mathrm{3}\mid={x}^{\mathrm{2}} −\mathrm{3}\wedge{x}^{\mathrm{2}} \geqslant\mathrm{3}\:\vee\:\mid{x}^{\mathrm{2}} −\mathrm{3}\mid=\mathrm{3}−{x}^{\mathrm{2}} \wedge{x}^{\mathrm{2}} <\mathrm{3} \\ $$$${f}\left({x}\right)=\begin{cases}{\mathrm{3}−{x}^{\mathrm{2}} \wedge−\sqrt{\mathrm{3}}\leqslant{x}\leqslant\sqrt{\mathrm{3}}}\\{{x}^{\mathrm{2}} −\mathrm{3}\wedge\left({x}<−\sqrt{\mathrm{3}}\vee{x}>\sqrt{\mathrm{3}}\right)}\end{cases} \\ $$$${f}'\left({x}\right)=\begin{cases}{−\mathrm{2}{x}\wedge−\sqrt{\mathrm{3}}\leqslant{x}\leqslant\sqrt{\mathrm{3}}}\\{\mathrm{2}{x}\wedge\left({x}<−\sqrt{\mathrm{3}}\vee{x}>\sqrt{\mathrm{3}}\right)}\end{cases} \\ $$
Commented by aliesam last updated on 20/Nov/19
$${thank}\:{you}\:{sir} \\ $$
Answered by arkanmath7@gmail.com last updated on 21/Nov/19
$${f}\left({x}\right)\:=\:\mid{g}\left({x}\right)\mid \\ $$$${f}\:'\left({x}\right)\:=\:\frac{{g}\left({x}\right)}{\mid{g}\left({x}\right)\mid}\:\centerdot\:{g}\:^{'} \left({x}\right) \\ $$$${let}\:{g}\left({x}\right)\:=\:{x}^{\mathrm{2}} \:−\mathrm{3}\:\:\Rightarrow\:{g}\:^{'} \left({x}\right)\:=\:\mathrm{2}{x} \\ $$$${f}\:^{'} \left({x}\right)\:=\:\frac{{x}^{\mathrm{2}} \:−\:\mathrm{3}}{\mid{x}^{\mathrm{2}} \:−\:\mathrm{3}\mid}\:\centerdot\:\mathrm{2}{x}\:=\:\frac{\mathrm{2}{x}^{\mathrm{3}} \:−\mathrm{6}{x}}{\mid{x}^{\mathrm{2}} \:−\:\mathrm{3}\mid} \\ $$