Menu Close

Question-74323




Question Number 74323 by arthur.kangdani@gmail.com last updated on 22/Nov/19
Commented by arthur.kangdani@gmail.com last updated on 22/Nov/19
Determine the inverse of the  matrix of AB+C!
$$\mathrm{Determine}\:\mathrm{the}\:\mathrm{inverse}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{matrix}\:\mathrm{of}\:{AB}+{C}! \\ $$
Commented by mathmax by abdo last updated on 22/Nov/19
A.B=  (((4          2)),((6           3)) )  (((2        3)),((5        4)) ) =  (((18         20)),((27           30)) )  A.B +C = (((18       20)),((27       30)) )  + (((6        4)),((2         3)) ) = (((24        24)),((29        33)) ) =M  P_c (x) =det(M−xI)=  determinant (((24−x        24)),((29          33−x)))  =(24−x)(33−x)−29×24 =24×33−24x−33x+x^2 −29×24  =x^2 −57x +24(33−29) =x^2 −57x +96  cayley hamilton ⇒M^2 −57 M +96I =0 ⇒  57M−M^2 =96I ⇒ M×((1/(96))( I−M))=I ⇒  M^(−1) =(1/(96))(I−M) =(1/(96))(   (((1       0)),((0        1)) ) − (((24       24)),((29       33)) ))  =(1/(96))  (((−23           −24)),((−29             −32)) )  = (((−((23)/(96))           −((24)/(96)))),((−((29)/(96))               −((32)/(96)))) )
$${A}.{B}=\:\begin{pmatrix}{\mathrm{4}\:\:\:\:\:\:\:\:\:\:\mathrm{2}}\\{\mathrm{6}\:\:\:\:\:\:\:\:\:\:\:\mathrm{3}}\end{pmatrix}\:\begin{pmatrix}{\mathrm{2}\:\:\:\:\:\:\:\:\mathrm{3}}\\{\mathrm{5}\:\:\:\:\:\:\:\:\mathrm{4}}\end{pmatrix}\:=\:\begin{pmatrix}{\mathrm{18}\:\:\:\:\:\:\:\:\:\mathrm{20}}\\{\mathrm{27}\:\:\:\:\:\:\:\:\:\:\:\mathrm{30}}\end{pmatrix} \\ $$$${A}.{B}\:+{C}\:=\begin{pmatrix}{\mathrm{18}\:\:\:\:\:\:\:\mathrm{20}}\\{\mathrm{27}\:\:\:\:\:\:\:\mathrm{30}}\end{pmatrix}\:\:+\begin{pmatrix}{\mathrm{6}\:\:\:\:\:\:\:\:\mathrm{4}}\\{\mathrm{2}\:\:\:\:\:\:\:\:\:\mathrm{3}}\end{pmatrix}\:=\begin{pmatrix}{\mathrm{24}\:\:\:\:\:\:\:\:\mathrm{24}}\\{\mathrm{29}\:\:\:\:\:\:\:\:\mathrm{33}}\end{pmatrix}\:={M} \\ $$$${P}_{{c}} \left({x}\right)\:={det}\left({M}−{xI}\right)=\:\begin{vmatrix}{\mathrm{24}−{x}\:\:\:\:\:\:\:\:\mathrm{24}}\\{\mathrm{29}\:\:\:\:\:\:\:\:\:\:\mathrm{33}−{x}}\end{vmatrix} \\ $$$$=\left(\mathrm{24}−{x}\right)\left(\mathrm{33}−{x}\right)−\mathrm{29}×\mathrm{24}\:=\mathrm{24}×\mathrm{33}−\mathrm{24}{x}−\mathrm{33}{x}+{x}^{\mathrm{2}} −\mathrm{29}×\mathrm{24} \\ $$$$={x}^{\mathrm{2}} −\mathrm{57}{x}\:+\mathrm{24}\left(\mathrm{33}−\mathrm{29}\right)\:={x}^{\mathrm{2}} −\mathrm{57}{x}\:+\mathrm{96} \\ $$$${cayley}\:{hamilton}\:\Rightarrow{M}^{\mathrm{2}} −\mathrm{57}\:{M}\:+\mathrm{96}{I}\:=\mathrm{0}\:\Rightarrow \\ $$$$\mathrm{57}{M}−{M}^{\mathrm{2}} =\mathrm{96}{I}\:\Rightarrow\:{M}×\left(\frac{\mathrm{1}}{\mathrm{96}}\left(\:{I}−{M}\right)\right)={I}\:\Rightarrow \\ $$$${M}^{−\mathrm{1}} =\frac{\mathrm{1}}{\mathrm{96}}\left({I}−{M}\right)\:=\frac{\mathrm{1}}{\mathrm{96}}\left(\:\:\begin{pmatrix}{\mathrm{1}\:\:\:\:\:\:\:\mathrm{0}}\\{\mathrm{0}\:\:\:\:\:\:\:\:\mathrm{1}}\end{pmatrix}\:−\begin{pmatrix}{\mathrm{24}\:\:\:\:\:\:\:\mathrm{24}}\\{\mathrm{29}\:\:\:\:\:\:\:\mathrm{33}}\end{pmatrix}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{96}}\:\begin{pmatrix}{−\mathrm{23}\:\:\:\:\:\:\:\:\:\:\:−\mathrm{24}}\\{−\mathrm{29}\:\:\:\:\:\:\:\:\:\:\:\:\:−\mathrm{32}}\end{pmatrix}\:\:=\begin{pmatrix}{−\frac{\mathrm{23}}{\mathrm{96}}\:\:\:\:\:\:\:\:\:\:\:−\frac{\mathrm{24}}{\mathrm{96}}}\\{−\frac{\mathrm{29}}{\mathrm{96}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−\frac{\mathrm{32}}{\mathrm{96}}}\end{pmatrix} \\ $$
Commented by abdomathmax last updated on 22/Nov/19
error at lime 7  M×(57I−M)=96 I ⇒  M×[(1/(96))( 57 I−M)]=I ⇒  M^(−1) =(1/(96)){  (((57       0)),((0        57)) ) − (((24        24)),((29         33)) )}  =(1/(96))  (((33         −24)),((−29         24)) )=....
$${error}\:{at}\:{lime}\:\mathrm{7}\:\:{M}×\left(\mathrm{57}{I}−{M}\right)=\mathrm{96}\:{I}\:\Rightarrow \\ $$$${M}×\left[\frac{\mathrm{1}}{\mathrm{96}}\left(\:\mathrm{57}\:{I}−{M}\right)\right]={I}\:\Rightarrow \\ $$$${M}^{−\mathrm{1}} =\frac{\mathrm{1}}{\mathrm{96}}\left\{\:\begin{pmatrix}{\mathrm{57}\:\:\:\:\:\:\:\mathrm{0}}\\{\mathrm{0}\:\:\:\:\:\:\:\:\mathrm{57}}\end{pmatrix}\:−\begin{pmatrix}{\mathrm{24}\:\:\:\:\:\:\:\:\mathrm{24}}\\{\mathrm{29}\:\:\:\:\:\:\:\:\:\mathrm{33}}\end{pmatrix}\right\} \\ $$$$=\frac{\mathrm{1}}{\mathrm{96}}\:\begin{pmatrix}{\mathrm{33}\:\:\:\:\:\:\:\:\:−\mathrm{24}}\\{−\mathrm{29}\:\:\:\:\:\:\:\:\:\mathrm{24}}\end{pmatrix}=…. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *