Question Number 74371 by liki last updated on 23/Nov/19
Commented by liki last updated on 23/Nov/19
$$….{plz}\:{help}\:{me}\:\mathrm{16}{a}\:,,{emergerce} \\ $$
Answered by MJS last updated on 23/Nov/19
$${ky}={kx}+{x}+\mathrm{7} \\ $$$${y}={x}+\frac{{x}}{{k}}+\frac{\mathrm{7}}{{k}} \\ $$$${y}={x}\left(\mathrm{1}+\frac{\mathrm{1}}{{k}}\right)+\frac{\mathrm{7}}{{k}} \\ $$$$\mathrm{1}+\frac{\mathrm{1}}{{k}}=\mathrm{2}\:\Rightarrow\:{k}=\mathrm{1} \\ $$$$\Rightarrow\:{y}=\mathrm{2}{x}+\mathrm{7} \\ $$
Commented by liki last updated on 23/Nov/19
$$…{Thanks}\:{sir} \\ $$
Answered by peter frank last updated on 24/Nov/19
$${ky}={kx}+{x}+\mathrm{7} \\ $$$${ky}^{'} ={k}+\mathrm{1} \\ $$$${y}^{'} =\mathrm{2} \\ $$$$\mathrm{2}{k}={k}+\mathrm{1} \\ $$$${k}=\mathrm{1} \\ $$$${y}−{intercept}\:{x}=\mathrm{0} \\ $$$${ky}=\mathrm{7} \\ $$$${y}=\mathrm{7} \\ $$