Menu Close

Question-74383




Question Number 74383 by aliesam last updated on 23/Nov/19
Commented by mathmax by abdo last updated on 23/Nov/19
A(x)=((16(√(x−(√x)))−3(√2)x−4(√2))/(16(x−4)^2 ))let use hospital theorem  let f(x)=16(√(x−(√x))) −3(√2)x−4(√2)  and g(x)=16(x−4)^2   we have f^′ (x)=16((1−(1/(2(√x))))/(2(√(x−(√x))))) −3(√2)  =8((2(√x)−1)/(2(√x)(√(x−(√x))))) −3(√2)=4×((2(√x)−1)/( (√(x^2 −x(√x))))) −3(√2)  and   f^((2)) (x)=4((((1/( (√x) )))(√(x^2 −x(√x)))−(2(√x)−1)×(((x^2 −x(√x))^′ )/(2(√(x^2 −x(√x))))))/(x^2 −x(√x)))  (x^2 −x(√x))^′ =2x−((√x)+x(1/(2(√x))))=2x−((√x)+((√x)/2))=2x−(3/2)(√x) ⇒  f^((2)) (x)=4((2(x^2 −x(√x))−(2(√x)−1)(2x−((3(√x))/2)))/(2(√x)(√(x^2 −x(√x)))(x^2 −x(√x)))) ⇒  f^((2)) (4) =4×((2(16−8)−(3)(8−3))/(2.2(√8)(8))) =((16−15)/(16(√2))) =(1/(16(√2)))  g(x)=16(x−4)^2  ⇒g^′ (x)=32(x−4) and g^((2)) (x)=32 ⇒  lim_(x→4)    A(x)=(1/(16(√2)×32)) =(1/(16×32(√2)))
A(x)=16xx32x4216(x4)2letusehospitaltheoremletf(x)=16xx32x42andg(x)=16(x4)2wehavef(x)=16112x2xx32=82x12xxx32=4×2x1x2xx32andf(2)(x)=4(1x)x2xx(2x1)×(x2xx)2x2xxx2xx(x2xx)=2x(x+x12x)=2x(x+x2)=2x32xf(2)(x)=42(x2xx)(2x1)(2x3x2)2xx2xx(x2xx)f(2)(4)=4×2(168)(3)(83)2.28(8)=1615162=1162g(x)=16(x4)2g(x)=32(x4)andg(2)(x)=32limx4A(x)=1162×32=116×322
Commented by aliesam last updated on 23/Nov/19
god bless you sir thank you
godblessyousirthankyou
Commented by mathmax by abdo last updated on 23/Nov/19
you are welcome .
youarewelcome.

Leave a Reply

Your email address will not be published. Required fields are marked *