Question Number 74456 by liki last updated on 24/Nov/19
Commented by liki last updated on 24/Nov/19
$$…{plz}\:{anyone}\:{knowing}\:{simple}\:{logic}\:{of} \\ $$$${find}\:{the}\:{possible}\:{number},{because}\: \\ $$$$\:{this}\:{always}\:{i}\:{did}\:{not}\:{understand}\:{so}\:{pl}\: \\ $$$$\:{i}\:{need}\:{simple}\:{way}\:{of}\:{find}\:{the}\:{others}\:{no}. \\ $$
Commented by $@ty@m123 last updated on 24/Nov/19
$${there}\:{is}\:{no}\:{hard}\:{and}\:{fast}\:{rule}. \\ $$$${Logic}\:\&\:{method}\:{of}\:{solving}\:{problem} \\ $$$${may}\:{vary}\:{from}\:{question}\:{to}\:{question}. \\ $$$${You}\:{can}\:{learn}\:{this}\:{only}\: \\ $$$${through}\:{practice}. \\ $$
Answered by mr W last updated on 24/Nov/19
$$\mathrm{6}=\mathrm{2}^{\mathrm{1}} ×\mathrm{3}^{\mathrm{1}} \\ $$$$\mathrm{360}=\mathrm{2}^{\mathrm{3}} ×\mathrm{3}^{\mathrm{2}} ×\mathrm{5}^{\mathrm{1}} \\ $$$$ \\ $$$$\mathrm{18}=\mathrm{2}^{\mathrm{1}} ×\mathrm{3}^{\mathrm{2}} \\ $$$$\mathrm{60}=\mathrm{2}^{\mathrm{2}} ×\mathrm{3}^{\mathrm{1}} ×\mathrm{5}^{\mathrm{1}} \\ $$$${y}=\mathrm{2}^{\mathrm{3}} ×\mathrm{3}^{\mathrm{1}..\mathrm{2}} ×\mathrm{5}^{\mathrm{0}..\mathrm{1}} =\mathrm{24},\mathrm{72},\mathrm{120},\mathrm{360} \\ $$
Commented by liki last updated on 24/Nov/19
$$..{thanks}\:{sir},,{can}\:{you}\:{assist}\:{me}\:{simple}\:{logic}\: \\ $$$${of}\:{get}\:{third}\:{no},{why}\:{did}\:{you}\:{take}\:\mathrm{2}^{\mathrm{3}} \:?? \\ $$
Commented by mr W last updated on 24/Nov/19
$${y}=\mathrm{2}^{\mathrm{3}} ×\mathrm{3}^{\mathrm{1}..\mathrm{2}} ×\mathrm{5}^{\mathrm{0}..\mathrm{1}} \\ $$$${i}.{e}. \\ $$$${y}_{\mathrm{1}} =\mathrm{2}^{\mathrm{3}} ×\mathrm{3}^{\mathrm{1}} ×\mathrm{5}^{\mathrm{0}} =\mathrm{24} \\ $$$${y}_{\mathrm{2}} =\mathrm{2}^{\mathrm{3}} ×\mathrm{3}^{\mathrm{2}} ×\mathrm{5}^{\mathrm{0}} =\mathrm{72} \\ $$$${y}_{\mathrm{3}} =\mathrm{2}^{\mathrm{3}} ×\mathrm{3}^{\mathrm{1}} ×\mathrm{5}^{\mathrm{1}} =\mathrm{120} \\ $$$${y}_{\mathrm{4}} =\mathrm{2}^{\mathrm{3}} ×\mathrm{3}^{\mathrm{2}} ×\mathrm{5}^{\mathrm{1}} =\mathrm{360} \\ $$
Commented by liki last updated on 24/Nov/19
$$…{plz}\:{mr}\:{w},{tell}\:{me}\:{the}\:{logic}\:{of}\:{take}\:\mathrm{2}^{\mathrm{3}} .. \\ $$
Commented by mr W last updated on 24/Nov/19
$${in}\:\mathrm{360}\:{we}\:{have}\:\mathrm{2}^{\mathrm{3}} ,\:{but}\:{in}\:\mathrm{18}\:{and}\:\mathrm{60}\:{we} \\ $$$${have}\:{max}.\:\mathrm{2}^{\mathrm{2}} ,\:{therefore}\:{in}\:{y}\:{we}\:{must} \\ $$$${have}\:{at}\:{least}\:\mathrm{2}^{\mathrm{3}} . \\ $$
Commented by liki last updated on 24/Nov/19
$$..{Thank}\:{you}\:{so}\:{much}\:{sir}\:{be}\:{blesed} \\ $$
Commented by liki last updated on 24/Nov/19
$$..{so}\:{it}\:{mean}\:{to}\:{get};\:{y}_{\mathrm{1}} =\mathrm{2}^{\mathrm{3}} ×\mathrm{3}^{\mathrm{1}} =\mathrm{24} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{y}_{\mathrm{2}} =\mathrm{2}^{\mathrm{3}} ×\mathrm{3}^{\mathrm{2}} =\mathrm{72} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{y}_{\mathrm{3}} =? \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{y}_{\mathrm{4}} =? \\ $$$$..{how}\:{to}\:{get}\:{y}_{\mathrm{3}} \:\&\:{y}_{\mathrm{4}} \\ $$$$ \\ $$