Question Number 74474 by ajfour last updated on 24/Nov/19
Commented by ajfour last updated on 24/Nov/19
$${Find}\:{the}\:{sides}\:{of}\:{the}\:{rectangle}. \\ $$
Answered by mr W last updated on 24/Nov/19
Commented by mr W last updated on 24/Nov/19
$${AD}=\mathrm{cos}\:\alpha+\frac{\mathrm{1}}{\mathrm{sin}\:\alpha} \\ $$$${AB}=\mathrm{sin}\:\alpha+\frac{\mathrm{1}}{\mathrm{cos}\:\alpha} \\ $$$${FB}=\frac{\mathrm{1}}{\mathrm{cos}\:\alpha} \\ $$$$\frac{{BC}}{{FB}}=\mathrm{tan}\:\left(\frac{\pi}{\mathrm{4}}+\alpha\right) \\ $$$$\frac{\mathrm{cos}\:\alpha+\frac{\mathrm{1}}{\mathrm{sin}\:\alpha}}{\frac{\mathrm{1}}{\mathrm{cos}\:\alpha}}=\mathrm{tan}\:\left(\frac{\pi}{\mathrm{4}}+\alpha\right) \\ $$$$\Rightarrow\frac{\mathrm{1}}{\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:\alpha}+\frac{\mathrm{1}}{\mathrm{tan}\:\alpha}=\frac{\mathrm{1}+\mathrm{tan}\:\alpha}{\mathrm{1}−\mathrm{tan}\:\alpha} \\ $$$${with}\:{t}=\mathrm{tan}\:\alpha \\ $$$$\Rightarrow\frac{\mathrm{1}}{\mathrm{1}+{t}^{\mathrm{2}} }+\frac{\mathrm{1}}{{t}}=\frac{\mathrm{1}+{t}}{\mathrm{1}−{t}} \\ $$$$\Rightarrow\frac{{t}^{\mathrm{2}} +{t}+\mathrm{1}}{{t}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)}=\frac{\mathrm{1}+{t}}{\mathrm{1}−{t}} \\ $$$$\Rightarrow{t}^{\mathrm{4}} +\mathrm{2}{t}^{\mathrm{3}} +{t}^{\mathrm{2}} +{t}−\mathrm{1}=\mathrm{0} \\ $$$$\Rightarrow{t}=\mathrm{0}.\mathrm{484}\:\Rightarrow\alpha=\mathrm{25}.\mathrm{827}° \\ $$
Commented by ajfour last updated on 25/Nov/19
$${Thank}\:{you}\:{Sir}. \\ $$